944 resultados para Autonomous robots systems
Resumo:
This literature review supports the report, Recent International Activity in Cooperative Vehicle-Highway Automation Systems. It reviews the published literature in English dating from 2007 or later about non-U.S.-based work on cooperative vehicle-highway automation systems. This review covers work performed in Europe and Japan, with application to transit buses, heavy trucks, and passenger cars. In addition to fully automated driving of the vehicles (without human intervention), it also covers partial automation systems, which automate subsets of the total driving process. Recent International Activity in Cooperative Vehicle Highway Automation Systems is published separately as FHWA-HRT-12-033.
Resumo:
To navigate successfully in a novel environment a robot needs to be able to Simultaneously Localize And Map (SLAM) its surroundings. The most successful solutions to this problem so far have involved probabilistic algorithms, but there has been much promising work involving systems based on the workings of part of the rodent brain known as the hippocampus. In this paper we present a biologically plausible system called RatSLAM that uses competitive attractor networks to carry out SLAM in a probabilistic manner. The system can effectively perform parameter self-calibration and SLAM in onedimension. Tests in two dimensional environments revealed the inability of the RatSLAM system to maintain multiple pose hypotheses in the face of ambiguous visual input. These results support recent rat experimentation that suggest current competitive attractor models are not a complete solution to the hippocampal modelling problem.
Resumo:
A reliable perception of the real world is a key-feature for an autonomous vehicle and the Advanced Driver Assistance Systems (ADAS). Obstacles detection (OD) is one of the main components for the correct reconstruction of the dynamic world. Historical approaches based on stereo vision and other 3D perception technologies (e.g. LIDAR) have been adapted to the ADAS first and autonomous ground vehicles, after, providing excellent results. The obstacles detection is a very broad field and this domain counts a lot of works in the last years. In academic research, it has been clearly established the essential role of these systems to realize active safety systems for accident prevention, reflecting also the innovative systems introduced by industry. These systems need to accurately assess situational criticalities and simultaneously assess awareness of these criticalities by the driver; it requires that the obstacles detection algorithms must be reliable and accurate, providing: a real-time output, a stable and robust representation of the environment and an estimation independent from lighting and weather conditions. Initial systems relied on only one exteroceptive sensor (e.g. radar or laser for ACC and camera for LDW) in addition to proprioceptive sensors such as wheel speed and yaw rate sensors. But, current systems, such as ACC operating at the entire speed range or autonomous braking for collision avoidance, require the use of multiple sensors since individually they can not meet these requirements. It has led the community to move towards the use of a combination of them in order to exploit the benefits of each one. Pedestrians and vehicles detection are ones of the major thrusts in situational criticalities assessment, still remaining an active area of research. ADASs are the most prominent use case of pedestrians and vehicles detection. Vehicles should be equipped with sensing capabilities able to detect and act on objects in dangerous situations, where the driver would not be able to avoid a collision. A full ADAS or autonomous vehicle, with regard to pedestrians and vehicles, would not only include detection but also tracking, orientation, intent analysis, and collision prediction. The system detects obstacles using a probabilistic occupancy grid built from a multi-resolution disparity map. Obstacles classification is based on an AdaBoost SoftCascade trained on Aggregate Channel Features. A final stage of tracking and fusion guarantees stability and robustness to the result.
Resumo:
The amplification of demand variation up a supply chain widely termed ‘the Bullwhip Effect’ is disruptive, costly and something that supply chain management generally seeks to minimise. Originally attributed to poor system design; deficiencies in policies, organisation structure and delays in material and information flow all lead to sub-optimal reorder point calculation. It has since been attributed to exogenous random factors such as: uncertainties in demand, supply and distribution lead time but these causes are not exclusive as academic and operational studies since have shown that orders and/or inventories can exhibit significant variability even if customer demand and lead time are deterministic. This increase in the range of possible causes of dynamic behaviour indicates that our understanding of the phenomenon is far from complete. One possible, yet previously unexplored, factor that may influence dynamic behaviour in supply chains is the application and operation of supply chain performance measures. Organisations monitoring and responding to their adopted key performance metrics will make operational changes and this action may influence the level of dynamics within the supply chain, possibly degrading the performance of the very system they were intended to measure. In order to explore this a plausible abstraction of the operational responses to the Supply Chain Council’s SCOR® (Supply Chain Operations Reference) model was incorporated into a classic Beer Game distribution representation, using the dynamic discrete event simulation software Simul8. During the simulation the five SCOR Supply Chain Performance Attributes: Reliability, Responsiveness, Flexibility, Cost and Utilisation were continuously monitored and compared to established targets. Operational adjustments to the; reorder point, transportation modes and production capacity (where appropriate) for three independent supply chain roles were made and the degree of dynamic behaviour in the Supply Chain measured, using the ratio of the standard deviation of upstream demand relative to the standard deviation of the downstream demand. Factors employed to build the detailed model include: variable retail demand, order transmission, transportation delays, production delays, capacity constraints demand multipliers and demand averaging periods. Five dimensions of supply chain performance were monitored independently in three autonomous supply chain roles and operational settings adjusted accordingly. Uniqueness of this research stems from the application of the five SCOR performance attributes with modelled operational responses in a dynamic discrete event simulation model. This project makes its primary contribution to knowledge by measuring the impact, on supply chain dynamics, of applying a representative performance measurement system.
Resumo:
Challenges of returnable transport equipment (RTE) management continue to heighten as the popularity of their usage magnifies. Logistics companies are investigating the implementation of radio-frequency identification (RFID) technology to alleviate problems such as loss prevention and stock reduction. However, the research within this field is limited and fails to fully explore with depth, the wider network improvements that can be made to optimize the supply chain through efficient RTE management. This paper, investigates the nature of RTE network management building on current research and practices, filling a gap in the literature, through the investigation of a product-centric approach where the paradigms of “intelligent products” and “autonomous objects” are explored. A network optimizing approach with RTE management is explored, encouraging advanced research development of the RTE paradigm to align academic research with problematic areas in industry. Further research continues with the development of an agent-based software system, ready for application to a real-case study distribution network, producing quantitative results for further analysis. This is pivotal on the endeavor to developing agile support systems, fully utilizing an information-centric environment and encouraging RTE to be viewed as critical network optimizing tools rather than costly waste.
Resumo:
Modern distributed control systems comprise of a set of processors which are interconnected using a suitable communication network. For use in real-time control environments, such systems must be deterministic and generate specified responses within critical timing constraints. Also, they should be sufficiently robust to survive predictable events such as communication or processor faults. This thesis considers the problem of coordinating and synchronizing a distributed real-time control system under normal and abnormal conditions. Distributed control systems need to periodically coordinate the actions of several autonomous sites. Often the type of coordination required is the all or nothing property of an atomic action. Atomic commit protocols have been used to achieve this atomicity in distributed database systems which are not subject to deadlines. This thesis addresses the problem of applying time constraints to atomic commit protocols so that decisions can be made within a deadline. A modified protocol is proposed which is suitable for real-time applications. The thesis also addresses the problem of ensuring that atomicity is provided even if processor or communication failures occur. Previous work has considered the design of atomic commit protocols for use in non time critical distributed database systems. However, in a distributed real-time control system a fault must not allow stringent timing constraints to be violated. This thesis proposes commit protocols using synchronous communications which can be made resilient to a single processor or communication failure and still satisfy deadlines. Previous formal models used to design commit protocols have had adequate state coverability but have omitted timing properties. They also assumed that sites communicated asynchronously and omitted the communications from the model. Timed Petri nets are used in this thesis to specify and design the proposed protocols which are analysed for consistency and timeliness. Also the communication system is mcxielled within the Petri net specifications so that communication failures can be included in the analysis. Analysis of the Timed Petri net and the associated reachability tree is used to show the proposed protocols always terminate consistently and satisfy timing constraints. Finally the applications of this work are described. Two different types of applications are considered, real-time databases and real-time control systems. It is shown that it may be advantageous to use synchronous communications in distributed database systems, especially if predictable response times are required. Emphasis is given to the application of the developed commit protocols to real-time control systems. Using the same analysis techniques as those used for the design of the protocols it can be shown that the overall system performs as expected both functionally and temporally.
Resumo:
More-electric vehicle technology is becoming prevalent in a number of transportation systems because of its ability to improve efficiency and reduce costs. This paper examines the specific case of an Uninhabited Autonomous Vehicle (UAV), and the system topology and control elements required to achieve adequate dc distribution voltage bus regulation. Voltage control methods are investigated and a droop control scheme is implemented on the system. Simulation results are also presented.
Resumo:
This thesis describes the history of robots and explains the reasons for the international differences in robot diffusion, and the differences in the diffusion of various robot applications with reference to the UK. As opposed to most of the literature, diffusion is examined with an integrated and interdisciplinary perspective. Robot technology evolves from the interaction of development, supply and manufacture, adoption, and promotion. activities. Emphasis is given to the analysis of adoption, at present the most important limiting factor of robot advancement in the UK. Technical development is inferred from a comparison of surveys on equipment, and from the topics of ten years of symposia papers. This classification of papers is also used to highlight the international and institutional differences in robot development. Analysis of the growth in robot supply, manufacture, and use is made from statistics compiled. A series of interviews with users and potential users serves to illustrate the factors and implications of the adoption of different robot systems in the UK. Adoption pioneering takes place when several conditions exist: when the technology is compatible with the firm, when its advantages outweigh its disadvantages, and particularly when a climate exists which encourages the managerial involvement and the labour acceptance. The degree of compatibility (technical, methodological, organisational, and economic) and the consequences (profitability, labour impacts, and managerial effects) of different robot systems (transfer, manipulative, processing, and assembly) are determined by various aspects of manufacturing operations (complexity, automation, integration, labour tasks, and working conditions). The climate for adoption pioneering is basically determined by the performance of firms. The firms' policies on capital investment have as decisive a role in determining the profitability of robots as their total labour costs. The performance of the motor car industry and its machine builders explains, more than any other factor, the present state of robot advancement in the UK.
Resumo:
Using a hydraulic equipment manufacturing plant as the case study, this work explores the problems of systems integration in manufacturing systems design, stressing the behavioural aspects of motivation and participation, and the constraints involved in the proper consideration of the human sub-system. The need for a simple manageable modular organisation structure is illustrated, where it is shown, by reference to systems theory, how a business can be split into semi-autonomous operating units. The theme is the development of a manufacturing system based on an analysis of the business, its market, product, technology and constraints, coupled with a critical survey of modern management literature to develop an integrated systems design to suit a specific company in the current social environment. Society currently moves through a socio-technical revolution with man seeking higher levels of motivation. The transitory environment from an autocratic/paternalistic to a participative operating mode demands systems parameters only found to a limited extent in manufacturing systems today. It is claimed, that modern manufacturing systems design needs to be based on group working, job enrichment, delegation of decision making and reduced job monotony. The analysis shows how negative aspects of cellular manufacture such as lack of flexibility and poor fixed asset utilisation are relatively irrelevant and misleading in the broader context of the need to come to terms with the social stresses imposed on a company operating in the industrial environment of the present and the immediate future.
Resumo:
We present a novel market-based method, inspired by retail markets, for resource allocation in fully decentralised systems where agents are self-interested. Our market mechanism requires no coordinating node or complex negotiation. The stability of outcome allocations, those at equilibrium, is analysed and compared for three buyer behaviour models. In order to capture the interaction between self-interested agents, we propose the use of competitive coevolution. Our approach is both highly scalable and may be tuned to achieve specified outcome resource allocations. We demonstrate the behaviour of our approach in simulation, where evolutionary market agents act on behalf of service providing nodes to adaptively price their resources over time, in response to market conditions. We show that this leads the system to the predicted outcome resource allocation. Furthermore, the system remains stable in the presence of small changes in price, when buyers' decision functions degrade gracefully. © 2009 The Author(s).
Resumo:
Novel computing systems are increasingly being composed of large numbers of heterogeneous components, each with potentially different goals or local perspectives, and connected in networks which change over time. Management of such systems quickly becomes infeasible for humans. As such, future computing systems should be able to achieve advanced levels of autonomous behaviour. In this context, the system's ability to be self-aware and be able to self-express becomes important. This paper surveys definitions and current understanding of self-awareness and self-expression in biology and cognitive science. Subsequently, previous efforts to apply these concepts to computing systems are described. This has enabled the development of novel working definitions for self-awareness and self-expression within the context of computing systems.
Resumo:
The results of research the intelligence multimodal man-machine interface and virtual reality means for assistive medical systems including computers and mechatronic systems (robots) are discussed. The gesture translation for disability peoples, the learning-by-showing technology and virtual operating room with 3D visualization are presented in this report and were announced at International exhibition "Intelligent and Adaptive Robots–2005".
Resumo:
There are a great deal of approaches in artificial intelligence, some of them also coming from biology and neirophysiology. In this paper we are making a review, discussing many of them, and arranging our discussion around the autonomous agent research. We highlight three aspect in our classification: type of abstraction applied for representing agent knowledge, the implementation of hypothesis processing mechanism, allowed degree of freedom in behaviour and self-organizing. Using this classification many approaches in artificial intelligence are evaluated. Then we summarize all discussed ideas and propose a series of general principles for building an autonomous adaptive agent.
Resumo:
Many systems and applications are continuously producing events. These events are used to record the status of the system and trace the behaviors of the systems. By examining these events, system administrators can check the potential problems of these systems. If the temporal dynamics of the systems are further investigated, the underlying patterns can be discovered. The uncovered knowledge can be leveraged to predict the future system behaviors or to mitigate the potential risks of the systems. Moreover, the system administrators can utilize the temporal patterns to set up event management rules to make the system more intelligent. With the popularity of data mining techniques in recent years, these events grad- ually become more and more useful. Despite the recent advances of the data mining techniques, the application to system event mining is still in a rudimentary stage. Most of works are still focusing on episodes mining or frequent pattern discovering. These methods are unable to provide a brief yet comprehensible summary to reveal the valuable information from the high level perspective. Moreover, these methods provide little actionable knowledge to help the system administrators to better man- age the systems. To better make use of the recorded events, more practical techniques are required. From the perspective of data mining, three correlated directions are considered to be helpful for system management: (1) Provide concise yet comprehensive summaries about the running status of the systems; (2) Make the systems more intelligence and autonomous; (3) Effectively detect the abnormal behaviors of the systems. Due to the richness of the event logs, all these directions can be solved in the data-driven manner. And in this way, the robustness of the systems can be enhanced and the goal of autonomous management can be approached. This dissertation mainly focuses on the foregoing directions that leverage tem- poral mining techniques to facilitate system management. More specifically, three concrete topics will be discussed, including event, resource demand prediction, and streaming anomaly detection. Besides the theoretic contributions, the experimental evaluation will also be presented to demonstrate the effectiveness and efficacy of the corresponding solutions.