982 resultados para Atomic Decompositions


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Testing a new method of nanoindentation using the atomic force microscope (AFM) was the purpose of this research. Nanoindentation is a useful technique to study the properties of materials on the sub-micron scale. The AFM has been used as a nanoindenter previously; however several parameters needed to obtain accurate results, including tip radius and cantilever sensitivity, can be difficult to determine. To solve this problem, a new method to determine the elastic modulus of a material using the atomic force microscope (AFM) has been proposed by Tang et al. This method models the cantilever and the sample as two springs in a series. The ratio of the cantilever spring constant (k) to diameter of the tip (2a) is treated in the model as one parameter (α=k/2a). The value of a, along with the cantilever sensitivity, are determined on two reference samples with known mechanical properties and then used to find the elastic modulus of an unknown sample. To determine the reliability and accuracy of this technique, it was tested on several polymers. Traditional depth-sensing nanoindentation was preformed for comparison. The elastic modulus values from the AFM were shown to be statistically similar to the nanoindenter results for three of the five samples tested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Insulated atomic force microscopy probes carrying gold conductive tips were fabricated and employed as bifunctional force and current sensors in electrolyte solutions under electrochemical potential control. The application of the probes for current-sensing imaging, force and current–distance spectroscopy as well as scanning electrochemical microscopy experiments was demonstrated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using ultracold alkaline-earth atoms in optical lattices, we construct a quantum simulator for U(N) and SU(N) lattice gauge theories with fermionic matter based on quantum link models. These systems share qualitative features with QCD, including chiral symmetry breaking and restoration at nonzero temperature or baryon density. Unlike classical simulations, a quantum simulator does not suffer from sign problems and can address the corresponding chiral dynamics in real time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

TNF-α (tumor necrosis factor-α) is a potent pro-inflammatory cytokine that regulates the permeability of blood and lymphatic vessels. The plasma concentration of TNF-α is elevated (> 1 pg/mL) in several pathologies, including rheumatoid arthritis, atherosclerosis, cancer, pre-eclampsia; in obese individuals; and in trauma patients. To test whether circulating TNF-α could induce similar alterations in different districts along the vascular system, three endothelial cell lines, namely HUVEC, HPMEC, and HCAEC, were characterized in terms of 1) mechanical properties, employing atomic force microscopy; 2) cytoskeletal organization, through fluorescence microscopy; and 3) membrane overexpression of adhesion molecules, employing ELISA and immunostaining. Upon stimulation with TNF-α (10 ng/mL for 20 h), for all three endothelial cells, the mechanical stiffness increased by about 50% with a mean apparent elastic modulus of E ~5 ± 0.5 kPa (~3.3 ± 0.35 kPa for the control cells); the density of F-actin filaments increased in the apical and median planes; and the ICAM-1 receptors were overexpressed compared with controls. Collectively, these results demonstrate that sufficiently high levels of circulating TNF-α have similar effects on different endothelial districts, and provide additional information for unraveling the possible correlations between circulating pro-inflammatory cytokines and systemic vascular dysfunction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Translocation factor EF-G, possesses a low basal GTPase activity, which is stimulated by the ribosome. One potential region of the ribosome that triggers GTPase activity of EF-G is the Sarcin-Ricin-Loop (SRL) (helix 95) in domain VI of the 23S rRNA. Structural data showed that the tip of the SRL closely approaches GTP in the active center of EF-G, structural probing data confirmed that EF-G interacts with nucleotides G2655, A2660, G2661 and A2662.1-3 The exocyclic group of adenine at A2660 is required for stimulation of EF-G GTPase activity by the ribosome as demonstrated using atomic mutagenesis.4 Recent crystal structures of EF-G on the ribosome, gave more insights into the molecular mechanism of EF-G GTPase activity.5 Based on the structure of EF-Tu on the ribosome1, the following mechanism of GTPase activation was proposed: upon binding of EF-G to the ribosome, the conserved His92 (E.coli) changes its position, pointing to the γ-phosphate of GTP. In this activated state, the phosphate of residue A2662 of the SRL positions the catalytic His in its active conformation. It was further proposed that the phosphate oxygen of A2662 is involved in a charge-relay system, enabling GTP hydrolysis. In order to test this mechanism, we use the atomic mutagenesis approach, which allows introducing non-natural modifications in the SRL, in the context of the complete 70S ribosome. Therefore, we replaced one of the non-bridging oxygens of A2662 by a methyl group. A methylphosphonat is not able to position or activate a histidine, as it has no free electrons and therefore no proton acceptor function. These modified ribosomes were then tested for stimulation of EF-G GTPase activity. First experiments show that one of the two stereoisomers incorporated into ribosomes does not stimulate GTPase activity of EF-G, whereas the other is active. From this we conclude that indeed the non-bridging phosphate oxygen of A2662 is involved in EF-G GTPase activation by the ribosome. Ongoing experiments aim at revealing the contribution of this non-bridging oxygen at A2662 to the mechanism of EF-G GTPase activation at the atomic level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Translocation factor EF-G, possesses a low basal GTPase activity, which is stimulated by the ribosome. One potential region of the ribosome that triggers GTPase activity of EF-G is the Sarcin-Ricin-Loop (SRL) (helix 95) in domain VI of the 23S rRNA. Structural data showed that the tip of the SRL closely approaches GTP in the active center of EF-G, structural probing data confirmed that EF-G interacts with nucleotides G2655, A2660, G2661 and A2662.1-3 The exocyclic group of adenine at A2660 is required for stimulation of EF-G GTPase activity by the ribosome as demonstrated using atomic mutagenesis.4 Recent crystal structures of EF-G on the ribosome, gave more insights into the molecular mechanism of EF-G GTPase activity.5 Based on the structure of EF-Tu on the ribosome1, the following mechanism of GTPase activation was proposed: upon binding of EF-G to the ribosome, the conserved His92 (E.coli) changes its position, pointing to the γ-phosphate of GTP. In this activated state, the phosphate of residue A2662 of the SRL positions the catalytic His in its active conformation. It was further proposed that the phosphate oxygen of A2662 is involved in a charge-relay system, enabling GTP hydrolysis. In order to test this mechanism, we use the atomic mutagenesis approach, which allows introducing non-natural modifications in the SRL, in the context of the complete 70S ribosome. Therefore, we replaced one of the non-bridging oxygens of A2662 by a methyl group. A methylphosphonat is not able to position or activate a histidine, as it has no free electrons and therefore no proton acceptor function. These modified ribosomes were then tested for stimulation of EF-G GTPase activity. First experiments show that one of the two stereoisomers incorporated into ribosomes does not stimulate GTPase activity of EF-G, whereas the other is active. From this we conclude that indeed the non-bridging phosphate oxygen of A2662 is involved in EF-G GTPase activation by the ribosome. Ongoing experiments aim at revealing the contribution of this non-bridging oxygen at A2662 to the mechanism of EF-G GTPase activation at the atomic level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the purpose of rational design of optical materials, distributed atomic polarizabilities of amino acid molecules and their hydrogen-bonded aggregates are calculated in order to identify the most efficient functional groups, able to buildup larger electric susceptibilities in crystals. Moreover, we carefully analyze how the atomic polarizabilities depend on the one-electron basis set or the many-electron Hamiltonian, including both wave function and density functional theory methods. This is useful for selecting the level of theory that best combines high accuracy and low computational costs, very important in particular when using the cluster method to estimate susceptibilities of molecular-based materials.