986 resultados para Asymptotic expansions.
Error, Bias, and Long-Branch Attraction in Data for Two Chloroplast Photosystem Genes in Seed Plants
Resumo:
Sequences of two chloroplast photosystem genes, psaA and psbB, together comprising about 3,500 bp, were obtained for all five major groups of extant seed plants and several outgroups among other vascular plants. Strongly supported, but significantly conflicting, phylogenetic signals were obtained in parsimony analyses from partitions of the data into first and second codon positions versus third positions. In the former, both genes agreed on a monophyletic gymnosperms, with Gnetales closely related to certain conifers. In the latter, Gnetales are inferred to be the sister group of all other seed plants, with gymnosperms paraphyletic. None of the data supported the modern ‘‘anthophyte hypothesis,’’ which places Gnetales as the sister group of flowering plants. A series of simulation studies were undertaken to examine the error rate for parsimony inference. Three kinds of errors were examined: random error, systematic bias (both properties of finite data sets), and statistical inconsistency owing to long-branch attraction (an asymptotic property). Parsimony reconstructions were extremely biased for third-position data for psbB. Regardless of the true underlying tree, a tree in which Gnetales are sister to all other seed plants was likely to be reconstructed for these data. None of the combinations of genes or partitions permits the anthophyte tree to be reconstructed with high probability. Simulations of progressively larger data sets indicate the existence of long-branch attraction (statistical inconsistency) for third-position psbB data if either the anthophyte tree or the gymnosperm tree is correct. This is also true for the anthophyte tree using either psaA third positions or psbB first and second positions. A factor contributing to bias and inconsistency is extremely short branches at the base of the seed plant radiation, coupled with extremely high rates in Gnetales and nonseed plant outgroups. M. J. Sanderson,* M. F. Wojciechowski,*† J.-M. Hu,* T. Sher Khan,* and S. G. Brady
Resumo:
We consider boundary layer flow of a micropolar fluid driven by a porous stretching sheet. A similarity solution is defined, and numerical solutions using Runge-Kutta and quasilinearisation schemes are obtained. A perturbation analysis is also used to derive analytic solutions to first order in the perturbing parameter. The resulting closed form solutions involve relatively complex expressions, and the analysis is made more tractable by a combination of offline and online work using a computational algebra system (CAS). For this combined numerical and analytic approach, the perturbation analysis yields a number of benefits with regard to the numerical work. The existence of a closed form solution helps to discriminate between acceptable and spurious numerical solutions. Also, the expressions obtained from the perturbation work can provide an accurate description of the solution for ranges of parameters where the numerical approaches considered here prove computationally more difficult.
Resumo:
We revisit the classical Karman rotating disk problem. A series analysis is used to derive estimates of boundary conditions at the surface. Using these estimates, computed thermal and flow fields for large mass transfer through the disk are readily obtained using a shooting method. The relevance of the problem to practical flows is discussed briefly.
Resumo:
Intuitively, any `bag of words' approach in IR should benefit from taking term dependencies into account. Unfortunately, for years the results of exploiting such dependencies have been mixed or inconclusive. To improve the situation, this paper shows how the natural language properties of the target documents can be used to transform and enrich the term dependencies to more useful statistics. This is done in three steps. The term co-occurrence statistics of queries and documents are each represented by a Markov chain. The paper proves that such a chain is ergodic, and therefore its asymptotic behavior is unique, stationary, and independent of the initial state. Next, the stationary distribution is taken to model queries and documents, rather than their initial distri- butions. Finally, ranking is achieved following the customary language modeling paradigm. The main contribution of this paper is to argue why the asymptotic behavior of the document model is a better representation then just the document's initial distribution. A secondary contribution is to investigate the practical application of this representation in case the queries become increasingly verbose. In the experiments (based on Lemur's search engine substrate) the default query model was replaced by the stable distribution of the query. Just modeling the query this way already resulted in significant improvements over a standard language model baseline. The results were on a par or better than more sophisticated algorithms that use fine-tuned parameters or extensive training. Moreover, the more verbose the query, the more effective the approach seems to become.
Resumo:
The population Monte Carlo algorithm is an iterative importance sampling scheme for solving static problems. We examine the population Monte Carlo algorithm in a simplified setting, a single step of the general algorithm, and study a fundamental problem that occurs in applying importance sampling to high-dimensional problem. The precision of the computed estimate from the simplified setting is measured by the asymptotic variance of estimate under conditions on the importance function. We demonstrate the exponential growth of the asymptotic variance with the dimension and show that the optimal covariance matrix for the importance function can be estimated in special cases.
Resumo:
The results of a numerical investigation into the errors for least squares estimates of function gradients are presented. The underlying algorithm is obtained by constructing a least squares problem using a truncated Taylor expansion. An error bound associated with this method contains in its numerator terms related to the Taylor series remainder, while its denominator contains the smallest singular value of the least squares matrix. Perhaps for this reason the error bounds are often found to be pessimistic by several orders of magnitude. The circumstance under which these poor estimates arise is elucidated and an empirical correction of the theoretical error bounds is conjectured and investigated numerically. This is followed by an indication of how the conjecture is supported by a rigorous argument.
Resumo:
Purpose: All currently considered parametric models used for decomposing videokeratoscopy height data are viewercentered and hence describe what the operator sees rather than what the surface is. The purpose of this study was to ascertain the applicability of an object-centered representation to modeling of corneal surfaces. Methods: A three-dimensional surface decomposition into a series of spherical harmonics is considered and compared with the traditional Zernike polynomial expansion for a range of videokeratoscopic height data. Results: Spherical harmonic decomposition led to significantly better fits to corneal surfaces (in terms of the root mean square error values) than the corresponding Zernike polynomial expansions with the same number of coefficients, for all considered corneal surfaces, corneal diameters, and model orders. Conclusions: Spherical harmonic decomposition is a viable alternative to Zernike polynomial decomposition. It achieves better fits to videokeratoscopic height data and has the advantage of an object-centered representation that could be particularly suited to the analysis of multiple corneal measurements.
Resumo:
Purpose: To ascertain the effectiveness of object-centered three-dimensional representations for the modeling of corneal surfaces. Methods: Three-dimensional (3D) surface decomposition into series of basis functions including: (i) spherical harmonics, (ii) hemispherical harmonics, and (iii) 3D Zernike polynomials were considered and compared to the traditional viewer-centered representation of two-dimensional (2D) Zernike polynomial expansion for a range of retrospective videokeratoscopic height data from three clinical groups. The data were collected using the Medmont E300 videokeratoscope. The groups included 10 normal corneas with corneal astigmatism less than −0.75 D, 10 astigmatic corneas with corneal astigmatism between −1.07 D and 3.34 D (Mean = −1.83 D, SD = ±0.75 D), and 10 keratoconic corneas. Only data from the right eyes of the subjects were considered. Results: All object-centered decompositions led to significantly better fits to corneal surfaces (in terms of the RMS error values) than the corresponding 2D Zernike polynomial expansions with the same number of coefficients, for all considered corneal surfaces, corneal diameters (2, 4, 6, and 8 mm), and model orders (4th to 10th radial orders) The best results (smallest RMS fit error) were obtained with spherical harmonics decomposition which lead to about 22% reduction in the RMS fit error, as compared to the traditional 2D Zernike polynomials. Hemispherical harmonics and the 3D Zernike polynomials reduced the RMS fit error by about 15% and 12%, respectively. Larger reduction in RMS fit error was achieved for smaller corneral diameters and lower order fits. Conclusions: Object-centered 3D decompositions provide viable alternatives to traditional viewer-centered 2D Zernike polynomial expansion of a corneal surface. They achieve better fits to videokeratoscopic height data and could be particularly suited to the analysis of multiple corneal measurements, where there can be slight variations in the position of the cornea from one map acquisition to the next.
Resumo:
This thesis addresses computational challenges arising from Bayesian analysis of complex real-world problems. Many of the models and algorithms designed for such analysis are ‘hybrid’ in nature, in that they are a composition of components for which their individual properties may be easily described but the performance of the model or algorithm as a whole is less well understood. The aim of this research project is to after a better understanding of the performance of hybrid models and algorithms. The goal of this thesis is to analyse the computational aspects of hybrid models and hybrid algorithms in the Bayesian context. The first objective of the research focuses on computational aspects of hybrid models, notably a continuous finite mixture of t-distributions. In the mixture model, an inference of interest is the number of components, as this may relate to both the quality of model fit to data and the computational workload. The analysis of t-mixtures using Markov chain Monte Carlo (MCMC) is described and the model is compared to the Normal case based on the goodness of fit. Through simulation studies, it is demonstrated that the t-mixture model can be more flexible and more parsimonious in terms of number of components, particularly for skewed and heavytailed data. The study also reveals important computational issues associated with the use of t-mixtures, which have not been adequately considered in the literature. The second objective of the research focuses on computational aspects of hybrid algorithms for Bayesian analysis. Two approaches will be considered: a formal comparison of the performance of a range of hybrid algorithms and a theoretical investigation of the performance of one of these algorithms in high dimensions. For the first approach, the delayed rejection algorithm, the pinball sampler, the Metropolis adjusted Langevin algorithm, and the hybrid version of the population Monte Carlo (PMC) algorithm are selected as a set of examples of hybrid algorithms. Statistical literature shows how statistical efficiency is often the only criteria for an efficient algorithm. In this thesis the algorithms are also considered and compared from a more practical perspective. This extends to the study of how individual algorithms contribute to the overall efficiency of hybrid algorithms, and highlights weaknesses that may be introduced by the combination process of these components in a single algorithm. The second approach to considering computational aspects of hybrid algorithms involves an investigation of the performance of the PMC in high dimensions. It is well known that as a model becomes more complex, computation may become increasingly difficult in real time. In particular the importance sampling based algorithms, including the PMC, are known to be unstable in high dimensions. This thesis examines the PMC algorithm in a simplified setting, a single step of the general sampling, and explores a fundamental problem that occurs in applying importance sampling to a high-dimensional problem. The precision of the computed estimate from the simplified setting is measured by the asymptotic variance of the estimate under conditions on the importance function. Additionally, the exponential growth of the asymptotic variance with the dimension is demonstrated and we illustrates that the optimal covariance matrix for the importance function can be estimated in a special case.
Resumo:
When asymptotic series methods are applied in order to solve problems that arise in applied mathematics in the limit that some parameter becomes small, they are unable to demonstrate behaviour that occurs on a scale that is exponentially small compared to the algebraic terms of the asymptotic series. There are many examples of physical systems where behaviour on this scale has important effects and, as such, a range of techniques known as exponential asymptotic techniques were developed that may be used to examinine behaviour on this exponentially small scale. Many problems in applied mathematics may be represented by behaviour within the complex plane, which may subsequently be examined using asymptotic methods. These problems frequently demonstrate behaviour known as Stokes phenomenon, which involves the rapid switches of behaviour on an exponentially small scale in the neighbourhood of some curve known as a Stokes line. Exponential asymptotic techniques have been applied in order to obtain an expression for this exponentially small switching behaviour in the solutions to orginary and partial differential equations. The problem of potential flow over a submerged obstacle has been previously considered in this manner by Chapman & Vanden-Broeck (2006). By representing the problem in the complex plane and applying an exponential asymptotic technique, they were able to detect the switching, and subsequent behaviour, of exponentially small waves on the free surface of the flow in the limit of small Froude number, specifically considering the case of flow over a step with one Stokes line present in the complex plane. We consider an extension of this work to flow configurations with multiple Stokes lines, such as flow over an inclined step, or flow over a bump or trench. The resultant expressions are analysed, and demonstrate interesting implications, such as the presence of exponentially sub-subdominant intermediate waves and the possibility of trapped surface waves for flow over a bump or trench. We then consider the effect of multiple Stokes lines in higher order equations, particu- larly investigating the behaviour of higher-order Stokes lines in the solutions to partial differential equations. These higher-order Stokes lines switch off the ordinary Stokes lines themselves, adding a layer of complexity to the overall Stokes structure of the solution. Specifically, we consider the different approaches taken by Howls et al. (2004) and Chap- man & Mortimer (2005) in applying exponential asymptotic techniques to determine the higher-order Stokes phenomenon behaviour in the solution to a particular partial differ- ential equation.
Resumo:
This paper considers the question of designing a fully image-based visual servo control for a class of dynamic systems. The work is motivated by the ongoing development of image-based visual servo control of small aerial robotic vehicles. The kinematics and dynamics of a rigid-body dynamical system (such as a vehicle airframe) maneuvering over a flat target plane with observable features are expressed in terms of an unnormalized spherical centroid and an optic flow measurement. The image-plane dynamics with respect to force input are dependent on the height of the camera above the target plane. This dependence is compensated by introducing virtual height dynamics and adaptive estimation in the proposed control. A fully nonlinear adaptive control design is provided that ensures asymptotic stability of the closed-loop system for all feasible initial conditions. The choice of control gains is based on an analysis of the asymptotic dynamics of the system. Results from a realistic simulation are presented that demonstrate the performance of the closed-loop system. To the author's knowledge, this paper documents the first time that an image-based visual servo control has been proposed for a dynamic system using vision measurement for both position and velocity.
Resumo:
Current rapid increases in the scope of regional development and the reach of technology have combined with the expanding scale of modern settlements to focus growing attention on infrastructure provisionneeds. This has included organisational and funding systems, the management of new technologies and regional scale social provisions. In this chapter, the evolution of urban and regional infrastructure is traced from its earliest origins in the growth of organized societies of 5 ,000 years ago. Infrastructure needs and provision are illustrated for the arenas of metropolitan, provincial and rural regions. Rural infrastructure examples and lessons are drawn from global case studies. Recent expansions of the scope of infrastructure are examined and issues of governance and process discussed. Phased planning processes are related to cycles of program adoption, objective formulation, option evaluation and programme budgeting. Issues of privatisation and public interest are considered. Matters of contemporary global significance are explored, including the current economic contraction and the effects of global climate change. Conclusions are drawn about the role and importance of linking regional planning to coherent regional infrastructure programs and budgets
Resumo:
The performance of an adaptive filter may be studied through the behaviour of the optimal and adaptive coefficients in a given environment. This thesis investigates the performance of finite impulse response adaptive lattice filters for two classes of input signals: (a) frequency modulated signals with polynomial phases of order p in complex Gaussian white noise (as nonstationary signals), and (b) the impulsive autoregressive processes with alpha-stable distributions (as non-Gaussian signals). Initially, an overview is given for linear prediction and adaptive filtering. The convergence and tracking properties of the stochastic gradient algorithms are discussed for stationary and nonstationary input signals. It is explained that the stochastic gradient lattice algorithm has many advantages over the least-mean square algorithm. Some of these advantages are having a modular structure, easy-guaranteed stability, less sensitivity to the eigenvalue spread of the input autocorrelation matrix, and easy quantization of filter coefficients (normally called reflection coefficients). We then characterize the performance of the stochastic gradient lattice algorithm for the frequency modulated signals through the optimal and adaptive lattice reflection coefficients. This is a difficult task due to the nonlinear dependence of the adaptive reflection coefficients on the preceding stages and the input signal. To ease the derivations, we assume that reflection coefficients of each stage are independent of the inputs to that stage. Then the optimal lattice filter is derived for the frequency modulated signals. This is performed by computing the optimal values of residual errors, reflection coefficients, and recovery errors. Next, we show the tracking behaviour of adaptive reflection coefficients for frequency modulated signals. This is carried out by computing the tracking model of these coefficients for the stochastic gradient lattice algorithm in average. The second-order convergence of the adaptive coefficients is investigated by modeling the theoretical asymptotic variance of the gradient noise at each stage. The accuracy of the analytical results is verified by computer simulations. Using the previous analytical results, we show a new property, the polynomial order reducing property of adaptive lattice filters. This property may be used to reduce the order of the polynomial phase of input frequency modulated signals. Considering two examples, we show how this property may be used in processing frequency modulated signals. In the first example, a detection procedure in carried out on a frequency modulated signal with a second-order polynomial phase in complex Gaussian white noise. We showed that using this technique a better probability of detection is obtained for the reduced-order phase signals compared to that of the traditional energy detector. Also, it is empirically shown that the distribution of the gradient noise in the first adaptive reflection coefficients approximates the Gaussian law. In the second example, the instantaneous frequency of the same observed signal is estimated. We show that by using this technique a lower mean square error is achieved for the estimated frequencies at high signal-to-noise ratios in comparison to that of the adaptive line enhancer. The performance of adaptive lattice filters is then investigated for the second type of input signals, i.e., impulsive autoregressive processes with alpha-stable distributions . The concept of alpha-stable distributions is first introduced. We discuss that the stochastic gradient algorithm which performs desirable results for finite variance input signals (like frequency modulated signals in noise) does not perform a fast convergence for infinite variance stable processes (due to using the minimum mean-square error criterion). To deal with such problems, the concept of minimum dispersion criterion, fractional lower order moments, and recently-developed algorithms for stable processes are introduced. We then study the possibility of using the lattice structure for impulsive stable processes. Accordingly, two new algorithms including the least-mean P-norm lattice algorithm and its normalized version are proposed for lattice filters based on the fractional lower order moments. Simulation results show that using the proposed algorithms, faster convergence speeds are achieved for parameters estimation of autoregressive stable processes with low to moderate degrees of impulsiveness in comparison to many other algorithms. Also, we discuss the effect of impulsiveness of stable processes on generating some misalignment between the estimated parameters and the true values. Due to the infinite variance of stable processes, the performance of the proposed algorithms is only investigated using extensive computer simulations.