975 resultados para Astrophysical Jet
Resumo:
Previous researchers use the velocity decay as an input to investigate the ship’s propeller jet induced scour. A researcher indicated that most of the equations used to predict the stability of various protection systems are often missing a physical background. The momentum decay and energy decay are currently proposed as an initial input for seabed scouring investigation, which are more sensible in physics. Computational fluid dynamics (CFD) and laser Doppler anemometry (LDA) experiments are used to obtain the velocity data and then transforming into momentum and energy decays. The findings proposed several exponential equations of velocity, momentum and energy decays to estimate the region exposed to the seabed scouring.
Resumo:
A description of the radiation emitted by impurities from within a plasma is crucial if spectral line intensities are to be used in detailed studies, such as the analysis of impurity transport. The simplest and most direct check that can be made on measurements of line intensities is to analyse their ratios with other lines from the same ion. This avoids uncertainties in determining the volume of the emitting plasma and the absolute sensitivity calibration of the spectrometer and, in some cases, the need even for accurate measurements of parameters such as electron density. Consistency is required between the measured line intensity ratios and the theoretical values. The expected consistency has not been found for radiation emitted from the JET scrape-off layer (e.g. Lawson et al 2009a JINST 4 P04013), meaning that the description of the spectral line intensities of impurity emission from the plasma edge is incomplete. In order to gain further understanding of the discrepancies, an analysis has been carried out for emission from the JET divertor plasma and this is reported in this paper. Carbon was the main low Z intrinsic impurity in JET and an analysis of spectral line intensity ratios has been made for the C (IV) radiation emitted from the JET divertor. In this case, agreement is found between the measured and theoretical ratios to a very high accuracy, namely to within the experimental uncertainty of similar to +/- 10%. This confirms that the description of the line intensities for the present observations is complete. For some elements and ionization stages, an analysis of line intensity ratios can lead to the determination of parameters such as the electron temperature of the emitting plasma region and estimates of the contribution of recombination to the electron energy level populations. This applies to C (IV) and, to show the value and possibilities of the spectral measurements, these parameters have been calculated for a database of Ohmic and additionally heated phases of a large number of pulses. The importance of dielectronic, radiative and charge-exchange recombination as well as ionization has been investigated. In addition, the development of T-e throughout two example discharges is illustrated. The presented results indicate a number of areas for further investigation.
Resumo:
A number of recent investigations have revealed that transverse waves are ubiquitous in the solar chromosphere. The vast majority of these have been reported in limb spicules and active region fibrils. We investigate long-lived, quiet-Sun, on-disk features such as chromospheric mottles (jet-like features located at the boundaries of supergranular cells) and their transverse motions. The observations were obtained with the Rapid Oscillations in the Solar Atmosphere instrument at the Dunn Solar Telescope. The data set is comprised of simultaneous imaging in the Ha core, Ca II K, and G band of an on-disk quiet-Sun region. Time-distance techniques are used to study the characteristics of the transverse oscillations. We detect over 40 transverse oscillations in both bright and dark mottles, with periods ranging from 70 to 280 s, with the most frequent occurrence at ~165 s. The velocity amplitudes and transverse displacements exhibit characteristics similar to limb spicules. Neighboring mottles oscillating in-phase are also observed. The transverse oscillations of individual mottles are interpreted in terms of magnetohydrodynamic kink waves. Their estimated periods and damping times are consistent with phase mixing and resonant mode conversion.
Resumo:
A quantitative study of refractive whole beam defocusing and small scale breakup induced by optical ionization of subpicosecond and picosecond, 0.25 and 1 mu m, laser pulses in gas-jet targets at densities above 1 x 10(19) cm(-3) has been carried out. A significant reduction of the incident laser intensity was observed due to refraction from ionization-induced density gradients. The level of refraction measured with optical probing correlated well with the fraction of energy transmitted through the plasma. The numerical and analytical models were found to agree well with experimental observations.
Resumo:
The spatial and temporal evolution of spontaneous megagauss magnetic fields, generated during the interaction of a picosecond pulse with solid targets at irradiances above 5 x 10(18) W/cm(2) have been measured using Faraday rotation with picosecond resolution. A high density plasma jet has been observed simultaneously with the magnetic fields by interferometry and optical emission. Two-dimensional magnetohydrodynamic simulations reproduced the main features of the experiment and showed that the jet formation is due to pinching by the magnetic fields.
Resumo:
The mean velocity and turbulence intensity are the two main inputs to investigate the ship propeller induced seabed scouring resulting from a vessel is manoeuvring within a port where the underkeel clearances are low. More accurate data including the turbulence intensity is now available by using the laser doppler anemometry (LDA) measurement system and computational fluid dynamics (CFD) approach. Turbulence intensity has a loose definition, which is the velocity fluctuation as the root mean square (RMS) referenced to a mean flow velocity. However, the velocity fluctuation and mean velocity can be the overall value includingx, y and z directions or the value of a single component. LDA and CFD results were obtained from two different acquisition systems (Dantec LDA system and Fluent CFD package) and therefore the outputs cannot be compared directly. An effective method is proposed for comparing the turbulence intensity between the experimental measurements and the computational predictions within a ship propeller jet. The flow patterns of turbulence intensity within a ship propeller jet are presented by using the LDA measurements and CFD results from turbulence models of standard k-e, RNG k-e, realizable k–e, standard k–?, SST k–?and Reynolds stresses.
Resumo:
We experimentally demonstrate a new regime of high-order harmonic generation by relativistic-irradiance lasers in gas jet targets. Bright harmonics with both odd and even orders, generated by linearly as well as circularly polarized pulses, are emitted in the forward direction, while the base harmonic frequency is downshifted. A 9 TW laser generates harmonics up to 360 eV, within the 'water window' spectral region. With a 120 TW laser producing 40 uJ/sr per harmonic at 120 eV, we demonstrate the photon number scalability. The observed harmonics cannot be explained by previously suggested scenarios. A novel high-order harmonics generation mechanism [T. Zh. Esirkepov et al., AIP Proceedings, this volume], which explains our experimental findings, is based on the phenomena inherent in the relativistic laser - underdense plasma interactions (self-focusing, cavity evacuation, and bow wave generation), mathematical catastrophe theory which explains formation of electron density singularities (cusps), and collective radiation due to nonlinear oscillations of a compact charge.
Resumo:
Spectropolarimetry of the Type Ib SN 2008D, associated with the X-ray Flash (XRF) 080109, at two separate epochs, is presented. The epochs of these observations correspond to V-band light curve maximum and 15 days after light curve maximum (or 21 and 36 days after the XRF). We find SN 2008D to be significantly polarized, although the largest contribution is due to the interstellar polarization component of Q ISP = 0% ± 0.1% and U ISP = -1.2% ± 0.1%. At the two epochs, the spectropolarimetry of SN 2008D is classified as being D1+L(He I)+L(Ca II). The intrinsic polarization of continuum wavelength regions is <0.4%, at both epochs, implying an asymmetry of the photosphere of <10%. Similar to other Type Ibc SNe, such as 2005bf, 2006aj, and 2007gr, we observed significant polarization corresponding to the spectral features of Ca II, He I, Mg I, Fe II and, possibly, O I ?7774, about a close-to-spherically symmetric photosphere. We introduce a new plot showing the chemically distinct line-forming regions in the ejecta and comment on the apparent ubiquity of highly polarized high-velocity Ca II features in Type Ibc SNe. The polarization angle of Ca II IR triplet was significantly different, at both epochs, to those of the other species, suggesting high-velocity Ca II forms in a separate part of the ejecta. The apparent structure in the outer layers of SN 2008D has implications for the interpretation of the early-time X-ray emission associated with shock breakout. We present two scenarios, within the jet-torus paradigm, which explain the lack of an apparent geometry discontinuity between the two observations: (1) a jet which punched a hole straight through the progenitor and deposited Ni outside the ejecta and (2) a jet which stalled inside the radius of the photosphere as observed at the second epoch. The lack of a peculiar polarization signature, suggesting strongly asymmetric excitation of the ejecta, and the reported properties of the shock-breakout favor the second scenario.
Resumo:
We outline our techniques to characterise photospheric granulation as an astrophysical noise source. A four component parameterisation of granulation is developed that can be used to reconstruct stellar line asymmetries and radial velocity shifts due to photospheric convective motions. The four components are made up of absorption line profiles calculated for granules, magnetic intergranular lanes, non-magnetic intergranular lanes, and magnetic bright points at disc centre. These components are constructed by averaging Fe I $6302 \mathrm{\AA}$ magnetically sensitive absorption line profiles output from detailed radiative transport calculations of the solar photosphere. Each of the four categories adopted are based on magnetic field and continuum intensity limits determined from examining three-dimensional magnetohydrodynamic simulations with an average magnetic flux of $200 \mathrm{G}$. Using these four component line profiles we accurately reconstruct granulation profiles, produced from modelling 12 x 12 Mm$^2$ areas on the solar surface, to within $\sim \pm$ 20 cm s$^{-1}$ on a $\sim$ 100 m s$^{-1}$ granulation signal. We have also successfully reconstructed granulation profiles from a $50 \mathrm{G}$ simulation using the parameterised line profiles from the $200 \mathrm{G}$ average magnetic field simulation. This test demonstrates applicability of the characterisation to a range of magnetic stellar activity levels.
Resumo:
Oscillatory flows of a choked underexpanded supersonic impinging jet issuing from a convergent nozzle have been computed using the axisymmetric unsteady Navier–Stokes system. This paper focuses on the oscillatory flow features associated with the variation of the nozzle-to-plate distance and nozzle pressure ratio. Frequencies of the surface pressure oscillation and flow structural changes from computational results have been analyzed. Staging behaviour of the oscillation frequency has been observed for both cases of nozzle-to-plate distance variation and pressure ratio variation. However, the staging behavior for each case exhibits different features. These two distinct staging behaviors of the oscillation frequency are found to correlate well if the frequency and the distance are normalized by the length of the shock cell. It is further found that the staging behaviour is strongly correlated with the change of the pressure wave pattern in the jet shear layer, but not with the shock cell structure.
Resumo:
Film cooling is extensively used to provide protection against the severe thermal environment in gas turbine engines. Most of the computational studies on film cooling flow have been done using steady Reynolds-averaged Navier–Stokes calculation procedures. However, the flowfield associated with a jet in a crossflow is highly unsteady and complex with different types of vortical structures. In this paper, a computational investigation about the unsteady phenomena of a jet in a crossflow is performed using detached eddy simulation. Detailed computation of a single row of 35 deg round holes on a flat plate has been obtained for a 1.0 blowing ratio and a 2.0 density ratio. First, time-step size, grid resolution, and computational domain tests for an unsteady simulation have been conducted. Comparison between the results of unsteady Reynolds-averaged Navier–Stokes calculation, detached eddy simulation, and large eddy simulation is also performed. Comparison of the time-averaged detached eddy simulation prediction with the measured film-cooling effectiveness shows that the detached eddy simulation prediction is reasonable. From present detached eddy simulations, the influential coherent vortical structures of a film cooling flow can be seen. The unsteady physics of jet in a crossflow interactions and a jet liftoff in film cooling flows have been explained.