952 resultados para Aspergillus japonicus
Resumo:
The G2 DNA damage and slowing of S-phase checkpoints over mitosis function through tyrosine phosphorylation of NIMXcdc2 in Aspergillus nidulans. We demonstrate that breaking these checkpoints leads to a defective premature mitosis followed by dramatic rereplication of genomic DNA. Two additional checkpoint functions, uvsB and uvsD, also cause the rereplication phenotype after their mutation allows premature mitosis in the presence of low concentrations of hydroxyurea. uvsB is shown to encode a rad3/ATR homologue, whereas uvsD displays homology to rad26, which has only previously been identified in Schizosaccharomyces pombe. uvsBrad3 and uvsDrad26 have G2 checkpoint functions over mitosis and another function essential for surviving DNA damage. The rereplication phenotype is accompanied by lack of NIMEcyclinB, but ectopic expression of active nondegradable NIMEcyclinB does not arrest DNA rereplication. DNA rereplication can also be induced in cells that enter mitosis prematurely because of lack of tyrosine phosphorylation of NIMXcdc2 and impaired anaphase-promoting complex function. The data demonstrate that lack of checkpoint control over mitosis can secondarily cause defects in the checkpoint system that prevents DNA rereplication in the absence of mitosis. This defines a new mechanism by which endoreplication of DNA can be triggered and maintained in eukaryotic cells.
Resumo:
Aspergillus nidulans contains two functionally distinct fatty acid synthases (FASs): one required for primary fatty acid metabolism (FAS) and the other required for secondary metabolism (sFAS). FAS mutants require long-chain fatty acids for growth, whereas sFAS mutants grow normally but cannot synthesize sterigmatocystin (ST), a carcinogenic secondary metabolite structurally and biosynthetically related to aflatoxin. sFAS mutants regain the ability to synthesize ST when provided with hexanoic acid, supporting the model that the ST polyketide synthase uses this short-chain fatty acid as a starter unit. The characterization of both the polyketide synthase and FAS may provide novel means for modifying secondary metabolites.
Resumo:
The four major oligomeric reaction products from saponified modified hairy regions (MHR-S) from apple, produced by recombinant rhamnogalacturonan (RG) α-l-rhamnopyranosyl-(1,4)-α-d-galactopyranosyluronide lyase (rRG-lyase) from Aspergillus aculeatus, were isolated and characterized by 1H-nuclear magnetic resonance spectroscopy. They contain an alternating RG backbone with a degree of polymerization of 4, 6, 8, and 10 and with an α-Δ-(4,5)-unsaturated d-galactopyranosyluronic acid at the nonreducing end and an l-rhamnopyranose at the reducing end. l-Rhamnopyranose units are substituted at C-4 with β-galactose. The maximum reaction rate of rRG-lyase toward MHR-S at pH 6.0 and 31°C was 28 units mg−1. rRG-lyase and RG-hydrolase cleave the same alternating RG I subunit in MHR. Both of these enzymes fragment MHR by a multiple attack mechanism. The catalytic efficiency of rRG-lyase for MHR increases with decreasing degree of acetylation. Removal of arabinose side chains improves the action of rRG-lyase toward MHR-S. In contrast, removal of galactose side chains decreased the catalytic efficiency of rRG-lyase. Native RG-lyase was purified from A. aculeatus, characterized, and found to be similar to the rRG-lyase expressed in Aspergillus oryzae.
Resumo:
The three-dimensional structure of Aspergillus niger pectin lyase B (PLB) has been determined by crystallographic techniques at a resolution of 1.7 Å. The model, with all 359 amino acids and 339 water molecules, refines to a final crystallographic R factor of 16.5%. The polypeptide backbone folds into a large right-handed cylinder, termed a parallel β helix. Loops of various sizes and conformations protrude from the central helix and probably confer function. The largest loop of 53 residues folds into a small domain consisting of three antiparallel β strands, one turn of an α helix, and one turn of a 310 helix. By comparison with the structure of Erwinia chrysanthemi pectate lyase C (PelC), the primary sequence alignment between the pectate and pectin lyase subfamilies has been corrected and the active site region for the pectin lyases deduced. The substrate-binding site in PLB is considerably less hydrophilic than the comparable PelC region and consists of an extensive network of highly conserved Trp and His residues. The PLB structure provides an atomic explanation for the lack of a catalytic requirement for Ca2+ in the pectin lyase family, in contrast to that found in the pectate lyase enzymes. Surprisingly, however, the PLB site analogous to the Ca2+ site in PelC is filled with a positive charge provided by a conserved Arg in the pectin lyases. The significance of the finding with regard to the enzymatic mechanism is discussed.
Resumo:
Sterigmatocystin (ST) and the aflatoxins (AFs), related fungal secondary metabolites, are among the most toxic, mutagenic, and carcinogenic natural products known. The ST biosynthetic pathway in Aspergillus nidulans is estimated to involve at least 15 enzymatic activities, while certain Aspergillus parasiticus, Aspergillus flavus, and Aspergillus nomius strains contain additional activities that convert ST to AF. We have characterized a 60-kb region in the A. nidulans genome and find it contains many, if not all, of the genes needed for ST biosynthesis. This region includes verA, a structural gene previously shown to be required for ST biosynthesis, and 24 additional closely spaced transcripts ranging in size from 0.6 to 7.2 kb that are coordinately induced only under ST-producing conditions. Each end of this gene cluster is demarcated by transcripts that are expressed under both ST-inducing and non-ST-inducing conditions. Deduced polypeptide sequences of regions within this cluster had a high percentage of identity with enzymes that have activities predicted for ST/AF biosynthesis, including a polyketide synthase, a fatty acid synthase (alpha and beta subunits), five monooxygenases, four dehydrogenases, an esterase, an 0-methyltransferase, a reductase, an oxidase, and a zinc cluster DNA binding protein. A revised system for naming the genes of the ST pathway is presented.
Resumo:
Migration of nuclei throughout the mycelium is essential for the growth and differentiation of filamentous fungi. In Aspergillus nidulans, the nudA gene, which is involved in nuclear migration, encodes a cytoplasmic dynein heavy chain. In this paper we use antibodies to characterize the Aspergillus cytoplasmic dynein heavy chain (ACDHC) and to show that the ACDHC is concentrated at the growing tip of the fungal mycelium. We demonstrate that four temperature-sensitive mutations in the nudA gene result in a striking decrease in ACDHC protein. Cytoplasmic dynein has been implicated in nuclear division in animal cells. Because the temperature-sensitive nudA mutants are able to grow slowly with occasional nuclei found in the mycelium and are able to undergo nuclear division, we have created a deletion/disruption nudA mutation and a tightly downregulated nudA mutation. These mutants exhibit a phenotype very similar to that of the temperature-sensitive nudA mutants with respect to growth, nuclear distribution, and nuclear division. This suggests that there are redundant backup motor proteins for both nuclear migration and nuclear division.
Resumo:
Literature cited: p. 45-46.
Resumo:
Caption title.
Resumo:
The thiol tripeptides, glutathione (GSH) and homoglutathione (hGSH), perform multiple roles in legumes, including protection against toxicity of free radicals and heavy metals. The three genes involved in the synthesis of GSH and hGSH in the model legume, Lotus japonicus, have been fully characterized and appear to be present as single copies in the genome. The gamma-glutamylcysteine synthetase (gammaecs) gene was mapped on the long arm of chromosome 4 (70.0 centimorgans [cM]) and consists of 15 exons, whereas the glutathione synthetase (gshs) and homoglutathione synthetase (hgshs) genes were mapped on the long arm of chromosome 1 (81.3 cM) and found to be arranged in tandem, with a separation of approximately 8 kb. Both genes consist of 12 exons of exactly the same size (except exon 1, which is similar). Two types of transcripts were detected for the gshs gene, which putatively encode proteins localized in the plastids and cytosol. Promoter regions contain cis-acting regulatory elements that may be involved in the plant's response to light, hormones, and stress. Determination of transcript levels, enzyme activities, and thiol contents in nodules, roots, and leaves revealed that gammaecs and hgshs are expressed in all three plant organs, whereas gshs is significantly functional only in nodules. This strongly suggests an important role of GSH in the rhizobia-legume symbiosis.
Resumo:
Variations in the growth and survival of six families of juvenile (initial mean weight = 4.16 g) Penaeus japonicus were examined at two densities (48 and 144 individuals m(-2)) in a controlled laboratory experiment. Survival was very high throughout the experiment (95.4%), but differed significantly between densities and rearing tanks. Family, sex and family x density interaction did not significantly affect survival. Mean specific growth rate (SGR) of the shrimp was 18% faster at the low density (1.93 +/- 0.05% day(-1)) than at high density (1.64 +/- 0.03% day(-1)). However, there was a small but significant interaction between family and density indicating that growth of the families was not consistent at both densities. The inconsistent growth of the families across the two densities resulted in a change in the relative performance (ranking) of families at each density. Sex, rearing tank and rearing cage also affected growth of the shrimp. Mean SGR of the females (1.79 +/- 0.03% day(-1)) was 5% faster than males (1.70 +/- 0.03% day(-1)) when averaged across both densities. Shrimp grew significantly faster in rearing tank 3 than rearing tank 1 or 2 at both densities. Results of the present study suggest that family x density interaction could affect the efficiency of selection for growth if shrimp stocks produced from shrimp breeding programs are to be grown across a wide range of densities. Crown Copyright (C) 2004 Published by Elsevier B.V. All rights reserved.
Resumo:
Beef and dairy cattle from four different herds in southern and central Queensland fed hydroponically-produced sprouted barley or wheat grain heavily infested with Aspergillus clavatus developed posterior ataxia with knuckling of fetlocks, muscular tremors and recumbency, but maintained appetite. A few animals variously had reduced milk production, hyperaesthesia, drooling of saliva, hypermetria of hind limbs or muscle spasms. Degeneration of large neurones was seen in the brain stem and spinal cord grey matter. The syndrome was consistent with A clavatus tremorgenic mycotoxicosis of ruminants. The cases are the earliest known to be associated with this fungus in Australia. They highlight a potential hazard of hydroponic fodder production systems, which appear to favour A clavatus growth on sprouted grain, exacerbated in some cases by equipment malfunctions that increase operating temperatures.
Resumo:
Galactomannan biosynthesis in legume seed endosperms involves two Golgi membrane-bound glycosyltransferases, mannan synthase and galactomannan galactosyltransferase (GMGT). GMGT specificity is an important factor regulating the distribution and amount of (1-->6)-alpha-galactose (Gal) substitution of the (1-->4)-beta-linked mannan backbone. The model legume Lotus japonicus is shown now to have endospermic seeds with endosperm cell walls that contain a high-Gal galactomannan (mannose [Man]/Gal = 1.2-1.3). Galactomannan biosynthesis in developing L. japonicus endosperms has been mapped, and a cDNA encoding a functional GMGT has been obtained from L. japonicus endosperms during galactomannan deposition. L. japonicus has been transformed with sense, antisense, and sense/antisense ("hairpin loop") constructs of the GMGT cDNA. Some of the sense, antisense, and sense/antisense transgenic lines exhibited galactomannans with altered (higher) Man/Gal values in their (T-1 generation) seeds, at frequencies that were consistent with posttranscriptional silencing of GMGT. For T-1 generation individuals, transgene inheritance was correlated with galactomannan composition and amount in the endosperm. All the azygous individuals had unchanged galactomannans, whereas those that had inherited a GMGT transgene exhibited a range of Man/Gal values, up to about 6 in some lines. For Man/Gal values up to 4, the results were consistent with lowered Gal substitution of a constant amount of mannan backbone. Further lowering of Gal substitution was accompanied by a slight decrease in the amount of mannan backbone. Microsomal membranes prepared from the developing T-2 generation endosperms of transgenic lines showed reduced GMGT activity relative to mannan synthase. The results demonstrate structural modification of a plant cell wall polysaccharide by designed regulation of a Golgi-bound glycosyltransferase.
Resumo:
Biological and chemical pro ling of an Australian strain of the fungus Aspergillus unilateralis (MST-F8675), isolated from a soil sample collected near Mount Isa, Queensland, revealed a complex array of metabolites displaying broad chemotherapeutic properties. Noteworthy among these metabolites were a unique series of highly modified dipeptides aspergillazines A-E, incorporating a selection of unprecedented and yet biosynthetically related heterocyclic systems. Co-occurring with the aspergillazines was the recently described marine-derived fungal metabolite trichodermamide A (cf. penicillazine), whereas re-fermentation of A. unilateralis in NaCl (1%) enriched media resulted in co-production of the only other known example of this structure class, the marine-derived fungal metabolite trichodermamide B. Further investigation of A. unilateralis returned the known terrestrial fungal metabolite viridicatumtoxin as the cytotoxic and antibacterial principle, together with E-2-decenedioic acid, ferulic acid, (7E,7'E)-5,5'-diferulic acid and (7E,7'E)-8,5'-diferulic acid. The aromatic diacids have previously been reported from the chemical and enzymatic (esterase) treatment of plant cell wall material, with their isolation from A. unilateralis being their first apparent reported occurrence as natural products. Structures for all metabolites were determined by detailed spectroscopic analysis and, where appropriate, comparison to literature data and/or authentic samples.
Resumo:
The reproductive capacity of adult Penaeus (Marsupenaeus) japonicus (Bate) was assessed after exposure to ionizing gamma radiation from a cobalt-60 source. Males and females were each exposed to 0, 10 and 20 Gray (Gy) of ionizing radiation (IR) and reciprocally crossed to give nine mating combinations. Fecundity and hatch rate of resulting spawnings were used as measures of reproductive capacity. IR significantly (P
Resumo:
The ability to track large numbers of individuals and families is a key determinant of the power and precision of breeding programs, including the capacity to quantify interactions between genotypes and their environment. Until recently, most family based selective breeding programs for shrimp, and other highly fecund aquaculture species, have been restricted by the number of animals that can be physically tagged and individually selected. Advances in the development of molecular markers, such as microsatellite loci, are now providing the means to track large numbers of individuals and families in commercial production systems. In this study microsatellites, coupled with DNA parentage analyses, were used to determine the relative performance of 22 families of R japonicus reared in commercial production ponds. In the experimental design 6000 post-larvae from each of 22 families, whose maternal parents had been genotyped at 8 microsatellite loci, were stocked into each of four I ha ponds. After 6 months the ponds were harvested and a total of 6000 individuals were randomly weighed from each pond. Mean wet weight of the shrimp from one pond was significantly lower than that of the other three ponds demonstrating a possible pond effect on growth rate. The representation of families in the top 10% of each pond's weight distribution was then determined by randomly genotyping up to 300 individuals from this upper weight class. Parentage analyses based on individual genotypic data demonstrated that some families were over-represented in the top 10% in all ponds, while others were under-represented due to slower growth rates. The results also revealed some weak, but significant, male genotype x environment (G x E) interactions in the expression of shrimp growth for some families. This indicates that G x E effects may need to be factored into future R japonicus selective breeding programs. This study demonstrated the utility of DNA parentage analyses for tracking individual family performance in communally stocked shrimp pond populations and, its application to examining G x E effects on trait expression under commercial culture conditions. Crown Copyright (c) 2005 Published by Elsevier B.V. All rights reserved.