843 resultados para Artificial intelligence algorithms


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Reinforcement Learning is an increasingly popular area of Artificial Intelligence. The applications of this learning paradigm are many, but its application in mobile computing is in its infancy. This study aims to provide an overview of current Reinforcement Learning applications on mobile devices, as well as to introduce a new framework for iOS devices: Swift-RL Lib. This new Swift package allows developers to easily support and integrate two of the most common RL algorithms, Q-Learning and Deep Q-Network, in a fully customizable environment. All processes are performed on the device, without any need for remote computation. The framework was tested in different settings and evaluated through several use cases. Through an in-depth performance analysis, we show that the platform provides effective and efficient support for Reinforcement Learning for mobile applications.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This research investigates the use of Artificial Intelligence (AI) systems for profiling and decision-making, and the consequences that it poses to rights and freedoms of individuals. In particular, the research considers that automated decision-making systems (ADMs) are opaque, can be biased, and their logic is correlation-based. For these reasons, ADMs do not take decisions as human beings do. Against this background, the risks for the rights of individuals combined with the demand for transparency of algorithms have created a debate on the need for a new 'right to explanation'. Assuming that, except in cases provided for by law, a decision made by a human does not entitle to a right to explanation, the question has been raised as to whether – if the decision is made by an algorithm – it is necessary to configure a right to explanation for the decision-subject. Therefore, the research addresses a right to explanation of automated decision-making, examining the relation between today’s technology and legal concepts of explanation, reasoning, and transparency. In particular, it focuses on the existence and scope of the right to explanation, considering legal and technical issues surrounding the use of ADMs. The research analyses the use of AI and the problems arising from it from a legal perspective, studying the EU legal framework – especially in the data protection field. In this context, a part of the research is focused on transparency requirements under the GDPR (namely, Articles 13–15, 22, as well as Recital 71). The research aims to outline an interpretative framework of such a right and make recommendations about its development, aiming to provide guidelines for an adequate explanation of automated decisions. Hence, the thesis analyses what an explanation might consist of, and the benefits of explainable AI – examined from legal and technical perspectives.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Riding the wave of recent groundbreaking achievements, artificial intelligence (AI) is currently the buzzword on everybody’s lips and, allowing algorithms to learn from historical data, Machine Learning (ML) emerged as its pinnacle. The multitude of algorithms, each with unique strengths and weaknesses, highlights the absence of a universal solution and poses a challenging optimization problem. In response, automated machine learning (AutoML) navigates vast search spaces within minimal time constraints. By lowering entry barriers, AutoML emerged as promising the democratization of AI, yet facing some challenges. In data-centric AI, the discipline of systematically engineering data used to build an AI system, the challenge of configuring data pipelines is rather simple. We devise a methodology for building effective data pre-processing pipelines in supervised learning as well as a data-centric AutoML solution for unsupervised learning. In human-centric AI, many current AutoML tools were not built around the user but rather around algorithmic ideas, raising ethical and social bias concerns. We contribute by deploying AutoML tools aiming at complementing, instead of replacing, human intelligence. In particular, we provide solutions for single-objective and multi-objective optimization and showcase the challenges and potential of novel interfaces featuring large language models. Finally, there are application areas that rely on numerical simulators, often related to earth observations, they tend to be particularly high-impact and address important challenges such as climate change and crop life cycles. We commit to coupling these physical simulators with (Auto)ML solutions towards a physics-aware AI. Specifically, in precision farming, we design a smart irrigation platform that: allows real-time monitoring of soil moisture, predicts future moisture values, and estimates water demand to schedule the irrigation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The scientific success of the LHC experiments at CERN highly depends on the availability of computing resources which efficiently store, process, and analyse the amount of data collected every year. This is ensured by the Worldwide LHC Computing Grid infrastructure that connect computing centres distributed all over the world with high performance network. LHC has an ambitious experimental program for the coming years, which includes large investments and improvements both for the hardware of the detectors and for the software and computing systems, in order to deal with the huge increase in the event rate expected from the High Luminosity LHC (HL-LHC) phase and consequently with the huge amount of data that will be produced. Since few years the role of Artificial Intelligence has become relevant in the High Energy Physics (HEP) world. Machine Learning (ML) and Deep Learning algorithms have been successfully used in many areas of HEP, like online and offline reconstruction programs, detector simulation, object reconstruction, identification, Monte Carlo generation, and surely they will be crucial in the HL-LHC phase. This thesis aims at contributing to a CMS R&D project, regarding a ML "as a Service" solution for HEP needs (MLaaS4HEP). It consists in a data-service able to perform an entire ML pipeline (in terms of reading data, processing data, training ML models, serving predictions) in a completely model-agnostic fashion, directly using ROOT files of arbitrary size from local or distributed data sources. This framework has been updated adding new features in the data preprocessing phase, allowing more flexibility to the user. Since the MLaaS4HEP framework is experiment agnostic, the ATLAS Higgs Boson ML challenge has been chosen as physics use case, with the aim to test MLaaS4HEP and the contribution done with this work.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This thesis is focused on the design of a flexible, dynamic and innovative telecommunication's system for future 6G applications on vehicular communications. The system is based on the development of drones acting as mobile base stations in an urban scenario to cope with the increasing traffic demand and avoid network's congestion conditions. In particular, the exploitation of Reinforcement Learning algorithms is used to let the drone learn autonomously how to behave in a scenario full of obstacles with the goal of tracking and serve the maximum number of moving vehicles, by at the same time, minimizing the energy consumed to perform its tasks. This project is an extraordinary opportunity to open the doors to a new way of applying and develop telecommunications in an urban scenario by mixing it to the rising world of the Artificial Intelligence.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Neural Networks customized and tested in this thesis (WaldoNet, FlowNet and PatchNet) are a first exploration and approach to the Template Matching task. The possibilities of extension are therefore many and some are proposed below. During my thesis, I have analyzed the functioning of the classical algorithms and adapted with deep learning algorithms. The features extracted from both the template and the query images resemble the keypoints of the SIFT algorithm. Then, instead of similarity function or keypoints matching, WaldoNet and PatchNet use the convolutional layer to compare the features, while FlowNet uses the correlational layer. In addition, I have identified the major challenges of the Template Matching task (affine/non-affine transformations, intensity changes...) and solved them with a careful design of the dataset.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This dissertation describes a deepening study about Visual Odometry problem tackled with transformer architectures. The existing VO algorithms are based on heavily hand-crafted features and are not able to generalize well to new environments. To train them, we need carefully fine-tune the hyper-parameters and the network architecture. We propose to tackle the VO problem with transformer because it is a general-purpose architecture and because it was designed to transformer sequences of data from a domain to another one, which is the case of the VO problem. Our first goal is to create synthetic dataset using BlenderProc2 framework to mitigate the problem of the dataset scarcity. The second goal is to tackle the VO problem by using different versions of the transformer architecture, which will be pre-trained on the synthetic dataset and fine-tuned on the real dataset, KITTI dataset. Our approach is defined as follows: we use a feature-extractor to extract features embeddings from a sequence of images, then we feed this sequence of embeddings to the transformer architecture, finally, an MLP is used to predict the sequence of camera poses.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Sales prediction plays a huge role in modern business strategies. One of it's many use cases revolves around estimating the effects of promotions. While promotions generally have a positive effect on sales of the promoted product, they can also have a negative effect on those of other products. This phenomenon is calles sales cannibalisation. Sales cannibalisation can pose a big problem to sales forcasting algorithms. A lot of times, these algorithms focus on sales over time of a single product in a single store (a couple). This research focusses on using knowledge of a product across multiple different stores. To achieve this, we applied transfer learning on a neural model developed by Kantar Consulting to demo an approach to estimating the effect of cannibalisation. Our results show a performance increase of between 10 and 14 percent. This is a very good and desired result, and Kantar will use the approach when integrating this test method into their actual systems.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Artificial Intelligence (AI) is gaining ever more ground in every sphere of human life, to the point that it is now even used to pass sentences in courts. The use of AI in the field of Law is however deemed quite controversial, as it could provide more objectivity yet entail an abuse of power as well, given that bias in algorithms behind AI may cause lack of accuracy. As a product of AI, machine translation is being increasingly used in the field of Law too in order to translate laws, judgements, contracts, etc. between different languages and different legal systems. In the legal setting of Company Law, accuracy of the content and suitability of terminology play a crucial role within a translation task, as any addition or omission of content or mistranslation of terms could entail legal consequences for companies. The purpose of the present study is to first assess which neural machine translation system between DeepL and ModernMT produces a more suitable translation from Italian into German of the atto costitutivo of an Italian s.r.l. in terms of accuracy of the content and correctness of terminology, and then to assess which translation proves to be closer to a human reference translation. In order to achieve the above-mentioned aims, two human and automatic evaluations are carried out based on the MQM taxonomy and the BLEU metric. Results of both evaluations show an overall better performance delivered by ModernMT in terms of content accuracy, suitability of terminology, and closeness to a human translation. As emerged from the MQM-based evaluation, its accuracy and terminology errors account for just 8.43% (as opposed to DeepL’s 9.22%), while it obtains an overall BLEU score of 29.14 (against DeepL’s 27.02). The overall performances however show that machines still face barriers in overcoming semantic complexity, tackling polysemy, and choosing domain-specific terminology, which suggests that the discrepancy with human translation may still be remarkable.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Artificial Intelligence (AI) has substantially influenced numerous disciplines in recent years. Biology, chemistry, and bioinformatics are among them, with significant advances in protein structure prediction, paratope prediction, protein-protein interactions (PPIs), and antibody-antigen interactions. Understanding PPIs is critical since they are responsible for practically everything living and have several uses in vaccines, cancer, immunology, and inflammatory illnesses. Machine Learning (ML) offers enormous potential for effectively simulating antibody-antigen interactions and improving in-silico optimization of therapeutic antibodies for desired features, including binding activity, stability, and low immunogenicity. This research looks at the use of AI algorithms to better understand antibody-antigen interactions, and it further expands and explains several difficulties encountered in the field. Furthermore, we contribute by presenting a method that outperforms existing state-of-the-art strategies in paratope prediction from sequence data.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Miniaturized flying robotic platforms, called nano-drones, have the potential to revolutionize the autonomous robots industry sector thanks to their very small form factor. The nano-drones’ limited payload only allows for a sub-100mW microcontroller unit for the on-board computations. Therefore, traditional computer vision and control algorithms are too computationally expensive to be executed on board these palm-sized robots, and we are forced to rely on artificial intelligence to trade off accuracy in favor of lightweight pipelines for autonomous tasks. However, relying on deep learning exposes us to the problem of generalization since the deployment scenario of a convolutional neural network (CNN) is often composed by different visual cues and different features from those learned during training, leading to poor inference performances. Our objective is to develop and deploy and adaptation algorithm, based on the concept of latent replays, that would allow us to fine-tune a CNN to work in new and diverse deployment scenarios. To do so we start from an existing model for visual human pose estimation, called PULPFrontnet, which is used to identify the pose of a human subject in space through its 4 output variables, and we present the design of our novel adaptation algorithm, which features automatic data gathering and labeling and on-device deployment. We therefore showcase the ability of our algorithm to adapt PULP-Frontnet to new deployment scenarios, improving the R2 scores of the four network outputs, with respect to an unknown environment, from approximately [−0.2, 0.4, 0.0,−0.7] to [0.25, 0.45, 0.2, 0.1]. Finally we demonstrate how it is possible to fine-tune our neural network in real time (i.e., under 76 seconds), using the target parallel ultra-low power GAP 8 System-on-Chip on board the nano-drone, and we show how all adaptation operations can take place using less than 2mWh of energy, a small fraction of the available battery power.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Technological advancement has undergone exponential growth in recent years, and this has brought significant improvements in the computational capabilities of computers, which can now perform an enormous amount of calculations per second. Taking advantage of these improvements has made it possible to devise algorithms that are very demanding in terms of the computational resources needed to develop architectures capable of solving the most complex problems: currently the most powerful of these are neural networks and in this thesis I will combine these tecniques with classical computer vision algorithms to improve the speed and accuracy of maintenance in photovoltaic facilities.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

There is an urgent need to make drug discovery cheaper and faster. This will enable the development of treatments for diseases currently neglected for economic reasons, such as tropical and orphan diseases, and generally increase the supply of new drugs. Here, we report the Robot Scientist 'Eve' designed to make drug discovery more economical. A Robot Scientist is a laboratory automation system that uses artificial intelligence (AI) techniques to discover scientific knowledge through cycles of experimentation. Eve integrates and automates library-screening, hit-confirmation, and lead generation through cycles of quantitative structure activity relationship learning and testing. Using econometric modelling we demonstrate that the use of AI to select compounds economically outperforms standard drug screening. For further efficiency Eve uses a standardized form of assay to compute Boolean functions of compound properties. These assays can be quickly and cheaply engineered using synthetic biology, enabling more targets to be assayed for a given budget. Eve has repositioned several drugs against specific targets in parasites that cause tropical diseases. One validated discovery is that the anti-cancer compound TNP-470 is a potent inhibitor of dihydrofolate reductase from the malaria-causing parasite Plasmodium vivax.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

PURPOSE: The main goal of this study was to develop and compare two different techniques for classification of specific types of corneal shapes when Zernike coefficients are used as inputs. A feed-forward artificial Neural Network (NN) and discriminant analysis (DA) techniques were used. METHODS: The inputs both for the NN and DA were the first 15 standard Zernike coefficients for 80 previously classified corneal elevation data files from an Eyesys System 2000 Videokeratograph (VK), installed at the Departamento de Oftalmologia of the Escola Paulista de Medicina, São Paulo. The NN had 5 output neurons which were associated with 5 typical corneal shapes: keratoconus, with-the-rule astigmatism, against-the-rule astigmatism, "regular" or "normal" shape and post-PRK. RESULTS: The NN and DA responses were statistically analyzed in terms of precision ([true positive+true negative]/total number of cases). Mean overall results for all cases for the NN and DA techniques were, respectively, 94% and 84.8%. CONCLUSION: Although we used a relatively small database, results obtained in the present study indicate that Zernike polynomials as descriptors of corneal shape may be a reliable parameter as input data for diagnostic automation of VK maps, using either NN or DA.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Various neuroimaging studies, both structural and functional, have provided support for the proposal that a distributed brain network is likely to be the neural basis of intelligence. The theory of Distributed Intelligent Processing Systems (DIPS), first developed in the field of Artificial Intelligence, was proposed to adequately model distributed neural intelligent processing. In addition, the neural efficiency hypothesis suggests that individuals with higher intelligence display more focused cortical activation during cognitive performance, resulting in lower total brain activation when compared with individuals who have lower intelligence. This may be understood as a property of the DIPS. Methodology and Principal Findings: In our study, a new EEG brain mapping technique, based on the neural efficiency hypothesis and the notion of the brain as a Distributed Intelligence Processing System, was used to investigate the correlations between IQ evaluated with WAIS (Whechsler Adult Intelligence Scale) and WISC (Wechsler Intelligence Scale for Children), and the brain activity associated with visual and verbal processing, in order to test the validity of a distributed neural basis for intelligence. Conclusion: The present results support these claims and the neural efficiency hypothesis.