999 resultados para Argilas - Aplicações terapêuticas
Resumo:
Microwave irradiation offers a clean, inexpensive, and convenient method of heating, which is an alternative way of introducing energy into chemical systems. In particular, applications of microwave irradiation technology for petroleum processing have been developed in the last twenty years. The main objective of this paper is to review the use of microwave irradiation technology as an alternative technique applied during petroleum refining and primary processing of petroleum fluids, presenting and discussing successful applications of this technology as a tool for petroleum emulsion separation and catalytic reactions normally found at hydrorefining plants.
Resumo:
In the present paper, the use of poly(styrene sulfonate) (PSS), produced from discarded polystyrene materials through heterogeneous and homogeneous processes, was investigated. The use of PSS for water treatment, using a kaolin suspension as wastewater model, reduced water turbidity for all the employed materials when compared to the blank analysis, without PSS. The most efficient polyelectrolyte was PSS cups obtained by homogeneous route. The same behavior was observed for real system. The homogeneous PSS cups showed a balance between a moderate molecular weight and high anionic character that improved flocks formation and water removal turbidity.
Resumo:
Cutinases (EC 3.1.1.74) are also known as cutin hidrolases. These enzymes share catalytic properties of lipases and esterases, presenting a unique feature of being active regardless the presence of an oil-water interface, making them interesting as biocatalysts in several industrial processes involving hydrolysis, esterification and trans-esterification reactions. They are also active in different reaction media, allowing their applications in different areas such as food industry, cosmetics, fine chemicals, pesticide and insecticide degradation, treatment and laundry of fiber textiles and polymer chemistry. The present review describes the characteristics, potential applications and new perspectives for these enzymes.
Resumo:
A composite electrode prepared by mixing a commercial epoxy resin Araldite® and graphite powder is proposed to be used in didactic experiments. The electrode is prepared by the students and applied in simple experiments to demonstrate the effect of the composite composition on the conductivity and the voltammetric response of the resulting electrode, as well as the response in relation to the scan rate dependence on mass transport. The possibility of using the composite electrode in quantitative analysis is also demonstrated.
Resumo:
This work proposes the synthesis of zeolite A by IZA standard proceedures starting from a natural clay. The clay was used in its natural form and after calcination at 900ºC. The resulting materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and porosity analysis by nitrogen adsorption. Results showed low surface area for Na-A zeolite in sodium form, but a higher one in CaA based on the nitrogen accessibility. The presence of cubic crystals for the A phase was observed in the SEM micrographies. The new procedure starting from natural clay favors the formation of sodalite while that using the calcinated clay gives A.
Reações de organocatálise com aminas quirais: aspectos mecanísticos e aplicações em síntese orgânica
Resumo:
The philosophy of organocatalysis is based on the utilization of organic compounds to catalyze organic transformations without the intervention of metals. This area has attracted much attention of the synthetic chemistry community on the last years, which can be confirmed by the explosion of published papers dealing with this subject. Phosphorus compounds, urea and thiourea derivatives, alkaloids, guanidine derivatives, for example, have already been used as organocatalysts. In this review we have focused on the use of chiral amines as organocatalyst. We have also chosen some outstanding examples to demonstrate the potentiality of this strategy in the synthesis of natural products and biologically active compounds.
Resumo:
The use of lignocellulosic fibers and their constituents, as raw materials in the production of polymeric and composite materials, represent an exceptional opportunity of sustainable technological development. In the present report works that discuss promising alternatives of obtaining and use of materials such as cellulose, hemicellulose, lignin, cellulose nanocrystals and biocomposites were revised. The advance in the use of biomass can be, in a near future, capable of going beyond the application difficulties of these vast materials, especially in relation to the economical unviability, by the production of high performance polymeric and composite materials. This advance would represent a higher profitability to some areas of agrobusiness, especially the sector of biofuels, which produces elevated amounts of biomass waste.
Resumo:
Chemical modification of clays is possible due to their ion-exchange and adsorption capacities, which allows the adjustment of the physicochemical properties of the surfaces of their layers. This modification makes possible the use of clays to produce a great number of new materials, which range from coarse applications such as oil based drilling fluids to refined applications such as pharmaceutical products. This article intends to expose where there is still space for research and investment aiming at the performance improvement of clay-based materials.
Resumo:
Immobilized Metal Ion Affinity Cromatography - IMAC - is a group-specific based adsorption applied to the purification and structure-function studies of proteins and nucleic acids. The adsorption is based on coordination between a metal ion chelated on the surface of a solid matrix and electron donor groups at the surface of the biomolecule. IMAC is a highly selective, low cost, and easily scaled-up technique being used in research and commercial operations. A separation process can be designed for a specific molecule by just selecting an appropriate metal ion, chelating agent, and operational conditions such as pH, ionic strength, and buffer type.
Resumo:
Five samples of natural clays denominated: diatomite, CN-20, CN-29, CN-40 and CN-45 from Aliança Latina LTDA were characterized by differents supplementary techniques such as: XRD, chemical analysis, adsorption N2 measurements, infrared spectroscopy analysis, thermogravimetric analysis. Clays were tested in adsorption of blue methylene. All of isotherms adjust in a model of physics adsorption with formation of multilayers, however in the case of diatomite was a favorable adsorption (type II) and the CNs were a not favorable adsorption (type III). In the case of CNs had flocculation of clay in high concentration of coloring.
Resumo:
A laboratory experiment that enables the professor to introduce the problematic of sustainable development in pharmaceutical chemistry to undergraduate students is proposed, using a simple synthetic procedure. Cholesteryl acetate is prepared by the esterification of cholesterol using Montmorillonite K10 as heterogeneous catalyst. Cholesterol and cholesteryl acetate are characterized by spectroscopic (¹H RMN, 13C RMN, FTIR) and thermal analysis techniques. The thermal methods are used to introduce the concepts of polymorphism and the nature of mesophases.
Resumo:
Two samples of calcic bentonite of the Santa Elena Peninsula, Ecuador, were pillared with Al13 ions in the ratio of 10, 15 and 20 meq of Al g-1 of clay, calcinated at 573, 723 and 873 ºK and acid activated with 4, 6 and 8 mol L-1 H2SO4. Analyses by X-ray diffraction, X-ray fluorescence, differential and gravimetric thermal, density, surface area and porosity, were applied in order to study the modifications occurred in the crystalline structure of the montmorillonite. The 8 mol L-1 H2SO4 acid-activated 15 meq of Al g-1 of clay at 573 ºK Al-pillared samples indicated the best results in the bleaching of the soybean oil measured by UV-visible spectrophotometer.
Resumo:
Fullerene chemistry has become a very active research field in the two last decades, largely because of the exceptional properties of the C60 molecule and the variety of fullerene derivatives that appear to be possible. In this review, a general analysis of fullerene C60 reactivity is performed. The principal methods for the covalent modification of this fascinating carbon cage are presented. The prospects of using fullerene derivatives as medicinal drugs and photoactive materials in light converting devices are demonstrated.
Resumo:
The theoretical aspects of Voltammetry of Immobilized Microparticles (VIM) were discussed. The immobilization of microparticles on electrode surface, the electrode cleaning processes and the electrode materials were analyzed. The three-phase electrode model and the possible reactions between the immobilized particle and the electrolytic solution were discussed. In addition, this work discusses some selected applications of VIM published in the last years.
Resumo:
In this review we summarize recent synthetic investigations about the preparation of oligothiophenes and polythiophenes, the most important π-conjugated organic materials for applications in electrochromic and electroluminescent devices. It is showed that many interesting and novel functionalized oligothiophenes have been synthesized by convenient coupling strategies (Heck, Kumada, Negishi, Suzuki, Stille and Ullmann) and oxidative coupling methods. Synthesis of polythiophenes are also presented and described according to chemical and electrochemical polymerization methodologies. The description of these noteworthy synthetic methods illustrates how important and promising are the interdisciplinary approaches in the obtaining of oligothiophenes and polythiophenes.