926 resultados para Approximate Bayesian computation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diplomityön tarkoituksena on optimoida asiakkaiden sähkölaskun laskeminen hajautetun laskennan avulla. Älykkäiden etäluettavien energiamittareiden tullessa jokaiseen kotitalouteen, energiayhtiöt velvoitetaan laskemaan asiakkaiden sähkölaskut tuntiperusteiseen mittaustietoon perustuen. Kasvava tiedonmäärä lisää myös tarvittavien laskutehtävien määrää. Työssä arvioidaan vaihtoehtoja hajautetun laskennan toteuttamiseksi ja luodaan tarkempi katsaus pilvilaskennan mahdollisuuksiin. Lisäksi ajettiin simulaatioita, joiden avulla arvioitiin rinnakkaislaskennan ja peräkkäislaskennan eroja. Sähkölaskujen oikeinlaskemisen tueksi kehitettiin mittauspuu-algoritmi.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Statistical analyses of measurements that can be described by statistical models are of essence in astronomy and in scientific inquiry in general. The sensitivity of such analyses, modelling approaches, and the consequent predictions, is sometimes highly dependent on the exact techniques applied, and improvements therein can result in significantly better understanding of the observed system of interest. Particularly, optimising the sensitivity of statistical techniques in detecting the faint signatures of low-mass planets orbiting the nearby stars is, together with improvements in instrumentation, essential in estimating the properties of the population of such planets, and in the race to detect Earth-analogs, i.e. planets that could support liquid water and, perhaps, life on their surfaces. We review the developments in Bayesian statistical techniques applicable to detections planets orbiting nearby stars and astronomical data analysis problems in general. We also discuss these techniques and demonstrate their usefulness by using various examples and detailed descriptions of the respective mathematics involved. We demonstrate the practical aspects of Bayesian statistical techniques by describing several algorithms and numerical techniques, as well as theoretical constructions, in the estimation of model parameters and in hypothesis testing. We also apply these algorithms to Doppler measurements of nearby stars to show how they can be used in practice to obtain as much information from the noisy data as possible. Bayesian statistical techniques are powerful tools in analysing and interpreting noisy data and should be preferred in practice whenever computational limitations are not too restrictive.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Med prediktion avses att man skattar det framtida värdet på en observerbar storhet. Kännetecknande för det bayesianska paradigmet är att osäkerhet gällande okända storheter uttrycks i form av sannolikheter. En bayesiansk prediktiv modell är således en sannolikhetsfördelning över de möjliga värden som en observerbar, men ännu inte observerad storhet kan anta. I de artiklar som ingår i avhandlingen utvecklas metoder, vilka bl.a. tillämpas i analys av kromatografiska data i brottsutredningar. Med undantag för den första artikeln, bygger samtliga metoder på bayesiansk prediktiv modellering. I artiklarna betraktas i huvudsak tre olika typer av problem relaterade till kromatografiska data: kvantifiering, parvis matchning och klustring. I den första artikeln utvecklas en icke-parametrisk modell för mätfel av kromatografiska analyser av alkoholhalt i blodet. I den andra artikeln utvecklas en prediktiv inferensmetod för jämförelse av två stickprov. Metoden tillämpas i den tredje artik eln för jämförelse av oljeprover i syfte att kunna identifiera den förorenande källan i samband med oljeutsläpp. I den fjärde artikeln härleds en prediktiv modell för klustring av data av blandad diskret och kontinuerlig typ, vilken bl.a. tillämpas i klassificering av amfetaminprover med avseende på produktionsomgångar.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Global illumination algorithms are at the center of realistic image synthesis and account for non-trivial light transport and occlusion within scenes, such as indirect illumination, ambient occlusion, and environment lighting. Their computationally most difficult part is determining light source visibility at each visible scene point. Height fields, on the other hand, constitute an important special case of geometry and are mainly used to describe certain types of objects such as terrains and to map detailed geometry onto object surfaces. The geometry of an entire scene can also be approximated by treating the distance values of its camera projection as a screen-space height field. In order to shadow height fields from environment lights a horizon map is usually used to occlude incident light. We reduce the per-receiver time complexity of generating the horizon map on N N height fields from O(N) of the previous work to O(1) by using an algorithm that incrementally traverses the height field and reuses the information already gathered along the path of traversal. We also propose an accurate method to integrate the incident light within the limits given by the horizon map. Indirect illumination in height fields requires information about which other points are visible to each height field point. We present an algorithm to determine this intervisibility in a time complexity that matches the space complexity of the produced visibility information, which is in contrast to previous methods which scale in the height field size. As a result the amount of computation is reduced by two orders of magnitude in common use cases. Screen-space ambient obscurance methods approximate ambient obscurance from the depth bu er geometry and have been widely adopted by contemporary real-time applications. They work by sampling the screen-space geometry around each receiver point but have been previously limited to near- field effects because sampling a large radius quickly exceeds the render time budget. We present an algorithm that reduces the quadratic per-pixel complexity of previous methods to a linear complexity by line sweeping over the depth bu er and maintaining an internal representation of the processed geometry from which occluders can be efficiently queried. Another algorithm is presented to determine ambient obscurance from the entire depth bu er at each screen pixel. The algorithm scans the depth bu er in a quick pre-pass and locates important features in it, which are then used to evaluate the ambient obscurance integral accurately. We also propose an evaluation of the integral such that results within a few percent of the ray traced screen-space reference are obtained at real-time render times.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, the feasibility of the floating-gate technology in analog computing platforms in a scaled down general-purpose CMOS technology is considered. When the technology is scaled down the performance of analog circuits tends to get worse because the process parameters are optimized for digital transistors and the scaling involves the reduction of supply voltages. Generally, the challenge in analog circuit design is that all salient design metrics such as power, area, bandwidth and accuracy are interrelated. Furthermore, poor flexibility, i.e. lack of reconfigurability, the reuse of IP etc., can be considered the most severe weakness of analog hardware. On this account, digital calibration schemes are often required for improved performance or yield enhancement, whereas high flexibility/reconfigurability can not be easily achieved. Here, it is discussed whether it is possible to work around these obstacles by using floating-gate transistors (FGTs), and analyze problems associated with the practical implementation. FGT technology is attractive because it is electrically programmable and also features a charge-based built-in non-volatile memory. Apart from being ideal for canceling the circuit non-idealities due to process variations, the FGTs can also be used as computational or adaptive elements in analog circuits. The nominal gate oxide thickness in the deep sub-micron (DSM) processes is too thin to support robust charge retention and consequently the FGT becomes leaky. In principle, non-leaky FGTs can be implemented in a scaled down process without any special masks by using “double”-oxide transistors intended for providing devices that operate with higher supply voltages than general purpose devices. However, in practice the technology scaling poses several challenges which are addressed in this thesis. To provide a sufficiently wide-ranging survey, six prototype chips with varying complexity were implemented in four different DSM process nodes and investigated from this perspective. The focus is on non-leaky FGTs, but the presented autozeroing floating-gate amplifier (AFGA) demonstrates that leaky FGTs may also find a use. The simplest test structures contain only a few transistors, whereas the most complex experimental chip is an implementation of a spiking neural network (SNN) which comprises thousands of active and passive devices. More precisely, it is a fully connected (256 FGT synapses) two-layer spiking neural network (SNN), where the adaptive properties of FGT are taken advantage of. A compact realization of Spike Timing Dependent Plasticity (STDP) within the SNN is one of the key contributions of this thesis. Finally, the considerations in this thesis extend beyond CMOS to emerging nanodevices. To this end, one promising emerging nanoscale circuit element - memristor - is reviewed and its applicability for analog processing is considered. Furthermore, it is discussed how the FGT technology can be used to prototype computation paradigms compatible with these emerging two-terminal nanoscale devices in a mature and widely available CMOS technology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The growing population in cities increases the energy demand and affects the environment by increasing carbon emissions. Information and communications technology solutions which enable energy optimization are needed to address this growing energy demand in cities and to reduce carbon emissions. District heating systems optimize the energy production by reusing waste energy with combined heat and power plants. Forecasting the heat load demand in residential buildings assists in optimizing energy production and consumption in a district heating system. However, the presence of a large number of factors such as weather forecast, district heating operational parameters and user behavioural parameters, make heat load forecasting a challenging task. This thesis proposes a probabilistic machine learning model using a Naive Bayes classifier, to forecast the hourly heat load demand for three residential buildings in the city of Skellefteå, Sweden over a period of winter and spring seasons. The district heating data collected from the sensors equipped at the residential buildings in Skellefteå, is utilized to build the Bayesian network to forecast the heat load demand for horizons of 1, 2, 3, 6 and 24 hours. The proposed model is validated by using four cases to study the influence of various parameters on the heat load forecast by carrying out trace driven analysis in Weka and GeNIe. Results show that current heat load consumption and outdoor temperature forecast are the two parameters with most influence on the heat load forecast. The proposed model achieves average accuracies of 81.23 % and 76.74 % for a forecast horizon of 1 hour in the three buildings for winter and spring seasons respectively. The model also achieves an average accuracy of 77.97 % for three buildings across both seasons for the forecast horizon of 1 hour by utilizing only 10 % of the training data. The results indicate that even a simple model like Naive Bayes classifier can forecast the heat load demand by utilizing less training data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis concerns the analysis of epidemic models. We adopt the Bayesian paradigm and develop suitable Markov Chain Monte Carlo (MCMC) algorithms. This is done by considering an Ebola outbreak in the Democratic Republic of Congo, former Zaïre, 1995 as a case of SEIR epidemic models. We model the Ebola epidemic deterministically using ODEs and stochastically through SDEs to take into account a possible bias in each compartment. Since the model has unknown parameters, we use different methods to estimate them such as least squares, maximum likelihood and MCMC. The motivation behind choosing MCMC over other existing methods in this thesis is that it has the ability to tackle complicated nonlinear problems with large number of parameters. First, in a deterministic Ebola model, we compute the likelihood function by sum of square of residuals method and estimate parameters using the LSQ and MCMC methods. We sample parameters and then use them to calculate the basic reproduction number and to study the disease-free equilibrium. From the sampled chain from the posterior, we test the convergence diagnostic and confirm the viability of the model. The results show that the Ebola model fits the observed onset data with high precision, and all the unknown model parameters are well identified. Second, we convert the ODE model into a SDE Ebola model. We compute the likelihood function using extended Kalman filter (EKF) and estimate parameters again. The motivation of using the SDE formulation here is to consider the impact of modelling errors. Moreover, the EKF approach allows us to formulate a filtered likelihood for the parameters of such a stochastic model. We use the MCMC procedure to attain the posterior distributions of the parameters of the SDE Ebola model drift and diffusion parts. In this thesis, we analyse two cases: (1) the model error covariance matrix of the dynamic noise is close to zero , i.e. only small stochasticity added into the model. The results are then similar to the ones got from deterministic Ebola model, even if methods of computing the likelihood function are different (2) the model error covariance matrix is different from zero, i.e. a considerable stochasticity is introduced into the Ebola model. This accounts for the situation where we would know that the model is not exact. As a results, we obtain parameter posteriors with larger variances. Consequently, the model predictions then show larger uncertainties, in accordance with the assumption of an incomplete model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study is to examine the impact of the choice of cut-off points, sampling procedures, and the business cycle on the accuracy of bankruptcy prediction models. Misclassification can result in erroneous predictions leading to prohibitive costs to firms, investors and the economy. To test the impact of the choice of cut-off points and sampling procedures, three bankruptcy prediction models are assessed- Bayesian, Hazard and Mixed Logit. A salient feature of the study is that the analysis includes both parametric and nonparametric bankruptcy prediction models. A sample of firms from Lynn M. LoPucki Bankruptcy Research Database in the U. S. was used to evaluate the relative performance of the three models. The choice of a cut-off point and sampling procedures were found to affect the rankings of the various models. In general, the results indicate that the empirical cut-off point estimated from the training sample resulted in the lowest misclassification costs for all three models. Although the Hazard and Mixed Logit models resulted in lower costs of misclassification in the randomly selected samples, the Mixed Logit model did not perform as well across varying business-cycles. In general, the Hazard model has the highest predictive power. However, the higher predictive power of the Bayesian model, when the ratio of the cost of Type I errors to the cost of Type II errors is high, is relatively consistent across all sampling methods. Such an advantage of the Bayesian model may make it more attractive in the current economic environment. This study extends recent research comparing the performance of bankruptcy prediction models by identifying under what conditions a model performs better. It also allays a range of user groups, including auditors, shareholders, employees, suppliers, rating agencies, and creditors' concerns with respect to assessing failure risk.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Approximate cost of completing the railway from Port Dalhousie to St. Catharines and an estimate of the cost of the piers at Port Dalhousie signed by William Hamilton Merritt (5 pages, handwritten), July 8, 1854.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Approximate estimate of the cost of completing the Port Dalhousie Railway to the Grand Central Railway Station at Lock 12. This document is badly torn and burned but most of the text is legible, July 14, 1854.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Approximate estimate of the cost of constructing and completing the Port Dalhousie and Thorold Railway to St. Catharines signed by S.D. Woodruff (2 pages, handwritten), Jan. 8, 1855.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Approximate estimate of the cost of extending the Port Dalhousie and Thorold Railway from Geneva Street to the Great Western Railway Station at Lock no. 12 (2 copies) [one appears to be a rough copy] (2 pages, handwritten), Feb. 2, 1855.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Memorandum respecting differences between the approximate and the final estimate (3 ¼ pages, handwritten), n.d.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Second copy of the memorandum respecting differences between the approximate and final estimate but this one has “memorandum of extras of Brown and McDonall contract” written on the outer page (3 pages, handwritten), n.d.