881 resultados para Antisense Inhibition
Resumo:
Osteopontin (OPN) is a predominantly secreted extracellular matrix glycophosphoprotein which binds to alpha v-containing integrins and has an important role in malignant cell attachment and invasion. High OPN expression in the primary tumor is associated with early metastasis and poor outcome in human breast and other cancers. Forced OPN overexpression in benign cells may induce neoplastic-like cell behaviour including increased attachment and invasion in vitro as well as the ability to metastasize in vivo. Conversely, OPN inhibition by antisense cDNA impedes cell growth and tumor forming capacity. OPN is not mutationally activated in cancer but its expression is regulated by Wnt/Tcf signaling, steroid receptors, growth factors, ras, Ets and AP-1 transcription factors. Presumably these factors are implicated in induction of OPN overexpression in cancer. Greater understanding of the role of OPN in neoplastic change and its transcriptional regulation may enable development of novel cancer treatment strategies
Resumo:
Background: The purpose of this study was to assess the efficacy and safety of ISIS 3521, an antisense phosphorothioate oligonucleotide to protein kinase C in patients with relapsed low-grade non-Hodgkin's lymphoma (NHL). Patients and methods: Twenty-six patients received ISIS 3521 (2 mg/kg/day) as a continuous infusion over 21 days of each 28-day cycle. Results: The median age of the patients was 53 years (range 37–77). Histological subtypes were low-grade follicular lymphoma (n=22) and B-cell small lymphocytic lymphoma (n=4). Twenty-one (81%) had stage III/IV disease. The median number of previous lines of chemotherapy was two (range one to six). A total of 87 cycles of ISIS 3521 were administered. Twenty-three patients were assessable for response. Three patients achieved a partial response. No complete responses were observed. Ten patients had stable disease. Grade 3–4 toxicity was as follows: neutropenia (3.8%) and thrombocytopenia (26.9%). Conclusions: ISIS 3521 has demonstrated anti-tumour activity in patients with relapsed low-grade NHL. There may be a potential role for this agent in combination with conventional chemotherapy for advanced low-grade lymphoma, and further trials are warranted.
Resumo:
The present study was undertaken to test whether inhibition of the proangiogenic inflammatory cytokine tumor necrosis factor (TNF)-alpha can modulate retinal hypoxia and preretinal neovascularization in a murine model of oxygen-induced retinopathy (OIR). OIR was produced in TNF-alpha-/- and wild-type (WT) control C57B6 neonatal mice by exposure to 75% oxygen between postnatal days 7 and 12 (P7 to P12). Half of each WT litter was treated with the cytokine inhibitor semapimod (formerly known as CNI-1493) (5 mg/kg) by daily intraperitoneal injection from the time of reintroduction to room air at P12 until P17. The extent of preretinal neovascularization and intraretinal revascularization was quantified by image analysis of retinal flat-mounts and retinal hypoxia correlated with vascularization by immunofluorescent localization of the hypoxia-sensitive drug pimonidazole (hypoxyprobe, HP). HP adducts were also characterized by Western analysis and quantified by competitive enzyme-linked immunosorbent assay. TNF-alpha-/- and WT mice showed a similar sensitivity to hyperoxia-induced retinal ischemia at P12. At P13 some delay in early reperfusion was evident in TNFalpha-/- and WT mice treated with semapimod. However, at P17 both these groups had significantly better vascular recovery with less ischemic/hypoxic retina and preretinal neovascularization compared to untreated retinopathy in WT mice. Immunohistochemistry showed deposition of HP in the avascular inner retina but not in areas underlying preretinal neovascularization, indicating that such aberrant vasculature can reduce retinal hypoxia. Inhibition of TNF-alpha significantly, improves vascular recovery within ischemic tissue and reduces pathological neovascularization in OIR. HP provides a useful tool for mapping and quantifying tissue hypoxia in experimental ischemic retinopathy.
Resumo:
The N-terminal propeptide domains of several cathepsin L-like cysteine proteases have been shown to possess potent inhibitory activity. Here we report the first kinetic characterisation of the inhibition properties of the cathepsin V propeptide (CatV PP). Using a facile recombinant approach we demonstrate expression, purification and evaluation of the CatV PP. This propeptide was found to behave as a tight-binding inhibitor against CatV (K (i) 10.2 nm). It also functions as an inhibitor against other members of the CatL-like subclass (CatL, 9.8 nm; CatS, 10.7 nm; and CatK, 149 nm) and had no discernible effects upon the more distantly related CatB.