897 resultados para Analysis of growth
Resumo:
‘Sustainable’ or ‘green’ commercial buildings are frequently seen as a growth sector in the property investment market. This research examines the emergence of sustainable commercial buildings in both the UK and overseas. The empirical part of the paper is based on a telephone survey of 50 UK corporate (private sector) occupiers taking leased and owner–occupied office space, which was carried out during the period of April to November 2008. The survey focused on actual moves made within the previous two years, or moves that were imminent during 2006–2008. The research suggests that although there is an emerging and increasing demand for sustainable offices in the UK, other factors such as location and availability of stock continue to remain more important than sustainability in determining occupiers’ final choice of office. Occupiers who moved to a Building Research Establishment Environmental Assessment Method (BREEAM)‐rated building, and were in business sectors with strong environmental and corporate responsibility policies, placed more emphasis on sustainability than other groups in the final choice of office, but location and availability remained paramount.
Resumo:
In barley, variation in the requirement for vernalization (an extended period of low temperature before flowering can occur) is determined by the VRN-H1, -H2 and -H3 loci. In European cultivated germplasm, most variation in vernalization requirement is accounted for by alleles at VRN-H1 and VRN-H2 only, but the range of allelic variation is largely unexplored. Here we characterise VRN-H1 and VRN-H2 haplotypes in 429 varieties representing a large portion of the acreage sown to barley in Western Europe over the last 60 years. Analysis of genotype, intron I sequencing data and growth habit tests identified three novel VRN-H1 alleles and determined the most frequent VRN-H1 intron I rearrangements. Combined analysis of VRN-H1 and VRN-H2 alleles resulted in the classification of seventeen VRN-H1/VRN-H2 multi-locus haplotypes, three of which account for 79% of varieties. The molecular markers employed here represent powerful diagnostic tools for prediction of growth habit and assessment of varietal purity. These markers will also allow development of germplasm to test the behaviour of individual alleles with the aim of understanding the relationship between allelic variation and adaptation to specific agri-environments.
Resumo:
Interactions between different convection modes can be investigated using an energy–cycle description under a framework of mass–flux parameterization. The present paper systematically investigates this system by taking a limit of two modes: shallow and deep convection. Shallow convection destabilizes itself as well as the other convective modes by moistening and cooling the environment, whereas deep convection stabilizes itself as well as the other modes by drying and warming the environment. As a result, shallow convection leads to a runaway growth process in its stand–alone mode, whereas deep convection simply damps out. Interaction between these two convective modes becomes a rich problem, even when it is limited to the case with no large–scale forcing, because of these opposing tendencies. Only if the two modes are coupled at a proper level can a self–sustaining system arise, exhibiting a periodic cycle. The present study establishes the conditions for self–sustaining periodic solutions. It carefully documents the behaviour of the two mode system in order to facilitate the interpretation of global model behaviours when this energy–cycle is implemented as a closure into a convection parameterization in future.
Resumo:
Serial sampling and stable isotope analysis performed along the growth axis of vertebrate tooth enamel records differences attributed to seasonal variation in diet, climate or animal movement. Because several months are required to obtain mature enamel in large mammals, modifications in the isotopic composition of environmental parameters are not instantaneously recorded, and stable isotope analysis of tooth enamel returns a time-averaged signal attenuated in its amplitude relative to the input signal. For convenience, stable isotope profiles are usually determined on the side of the tooth where enamel is thickest. Here we investigate the possibility of improving the time resolution by targeting the side of the tooth where enamel is thinnest. Observation of developing third molars (M3) in sheep shows that the tooth growth rate is not constant but decreases exponentially, while the angle between the first layer of enamel deposited and the enamel–dentine junction increases as a tooth approaches its maximal length. We also noted differences in thickness and geometry of enamel growth between the mesial side (i.e., the side facing the M2) and the buccal side (i.e., the side facing the cheek) of the M3. Carbon and oxygen isotope variations were measured along the M3 teeth from eight sheep raised under controlled conditions. Intra-tooth variability was systematically larger along the mesial side and the difference in amplitude between the two sides was proportional to the time of exposure to the input signal. Although attenuated, the mesial side records variations in the environmental signal more faithfully than the buccal side. This approach can be adapted to other mammals whose teeth show lateral variation in enamel thickness and could potentially be used as an internal check for diagenesis.
Resumo:
The sensitivity of the biological parameters in a nutrient-phytoplankton-zooplankton-detritus (NPZD) model in the calculation of the air-sea CO2 flux, primary production and detrital export is analysed. We explore the effect on these outputs of variation in the values of the twenty parameters that control ocean ecosystem growth in a 1-D formulation of the UK Met Office HadOCC NPZD model used in GCMs. We use and compare the results from one-at-a-time and all-at-a-time perturbations performed at three sites in the EuroSITES European Ocean Observatory Network: the Central Irminger Sea (60° N 40° W), the Porcupine Abyssal Plain (49° N 16° W) and the European Station for Time series in the Ocean Canary Islands (29° N 15° W). Reasonable changes to the values of key parameters are shown to have a large effect on the calculation of the air-sea CO2 flux, primary production, and export of biological detritus to the deep ocean. Changes in the values of key parameters have a greater effect in more productive regions than in less productive areas. The most sensitive parameters are generally found to be those controlling well-established ocean ecosystem parameterisations widely used in many NPZD-type models. The air-sea CO2 flux is most influenced by variation in the parameters that control phytoplankton growth, detrital sinking and carbonate production by phytoplankton (the rain ratio). Primary production is most sensitive to the parameters that define the shape of the photosynthesis-irradiance curve. Export production is most sensitive to the parameters that control the rate of detrital sinking and the remineralisation of detritus.
Resumo:
Abstract: During the transition from endo-dormancy to eco-dormancy and subsequent growth, the onion bulb undergoes the transition from sink organ to source, to sustain cell division in the meristematic tissue. The mechanisms controlling these processes are not fully understood. Here, a detailed analysis of whole onion bulb physiological, biochemical and transcriptional changes in response to sprouting is reported, enabling a better knowledge of the mechanisms regulating post-harvest onion sprout development. Biochemical and physiological analyses were conducted on different cultivars ('Wellington', 'Sherpa' and 'Red Baron') grown at different sites over 3 years, cured at different temperatures (20, 24 and 28 degrees C) and stored under different regimes (1, 3, 6 and 6 1 degrees C). In addition, the first onion oligonucleotide microarray was developed to determine differential gene expression in onion during curing and storage, so that transcriptional changes could support biochemical and physiological analyses. There were greater transcriptional differences between samples at harvest and before sprouting than between the samples taken before and after sprouting, with some significant changes occurring during the relatively short curing period. These changes are likely to represent the transition from endo-dormancy to sprout suppression, and suggest that endo-dormancy is a relatively short period ending just after curing. Principal component analysis of biochemical and physiological data identified the ratio of monosaccharides (fructose and glucose) to disaccharide (sucrose), along with the concentration of zeatin riboside, as important factors in discriminating between sprouting and pre-sprouting bulbs. These detailed analyses provide novel insights into key regulatory triggers for sprout dormancy release in onion bulbs and provide the potential for the development of biochemical or transcriptional markers for sprout initiation. Evidence presented herein also suggests there is no detrimental effect on bulb storage life and quality caused by curing at 20 degrees C, producing a considerable saving in energy and costs.
Resumo:
The network paradigm has been highly influential in spatial analysis in the globalisation era. As economies across the world have become increasingly integrated, so-called global cities have come to play a growing role as central nodes in the networked global economy. The idea that a city’s position in global networks benefits its economic performance has resulted in a competitive policy focus on promoting the economic growth of cities by improving their network connectivity. However, in spite of the attention being given to boosting city connectivity little is known about whether this directly translates to improved city economic performance and, if so, how well connected a city needs to be in order to benefit from this. In this paper we test the relationship between network connectivity and economic performance between 2000 and 2008 for cities with over 500,000 inhabitants in Europe and the USA to inform European policy.
Transcriptomic analysis of Enterohaemorrhagic Escherichia coli O157:H7 in response to plant extracts
Resumo:
Enterohaemorrhagic Escherichia coli (EHEC) are a group of food and contact-borne pathogens responsible for haemorrhagic colitis. The bacteria can be transmitted by contaminated meat, but importantly, also by plants. The bacteria can use plants as an alternative host, where they associate with both the leaves and the roots. Colonisation in the rhizosphere of plants is thought to be the main habitat for colonisation. Four different plant species, commonly associated with EHEC outbreaks, were infected with EHEC O157:H7 isolates Sakai and TUV 93-0 over ten days to assess the colonisation potential of the bacteria in both the phyllosphere and rhizosphere of plants. The rhizosphere was found to sustain a higher population level of bacteria over time in comparison to the phyllosphere, yet both strains were unable to utilize root exudates for growth. Global gene expression changes of EHEC O157:H7 strain Sakai were measured in response to plant extracts such as leaf lysates, root exudates and leaf cell wall polysaccharides from spinach cultivar Amazon and lettuce cultivar Salinas. Microarrays analysis showed a significant change in expression of 17 % of genes on exposure to leaf lysates of spinach. A more specific response was seen to spinach leaf cell wall polysaccharides with only a 1.5 % change. In contrast, when exposed to lettuce leaf cell wall polysaccharides a higher change of 4.8 % was seen. Genes that were differentially expressed belonged to multiple functional groups, including metabolism, indicating the utilization of plant-specific polysaccharides. Several areas of further investigation have been determined from this project, including the importance of culturing bacterial strains at a relevant temperature, the proposed lack of the type III secretion system in plant colonization by EHEC O157:H7 and the utilization of plant components for growth and persistence in the plant environment.
Resumo:
Within-field variation in sugar beet yield and quality was investigated in three commercial sugar beet fields in the east of England to identify the main associated variables and to examine the possibility of predicting yield early in the season with a view to spatially variable management of sugar beet crops. Irregular grid sampling with some purposively-located nested samples was applied. It revealed the spatial variability in each sugar beet field efficiently. In geostatistical analyses, most variograms were isotropic with moderate to strong spatial dependency indicating a significant spatial variation in sugar beet yield and associated growth and environmental variables in all directions within each field. The Kriged maps showed spatial patterns of yield variability within each field and visual association with the maps of other variables. This was confirmed by redundancy analyses and Pearson correlation coefficients. The main variables associated with yield variability were soil type, organic matter, soil moisture, weed density and canopy temperature. Kriged maps of final yield variability were strongly related to that in crop canopy cover, LAI and intercepted solar radiation early in the growing season, and the yield maps of previous crops. Therefore, yield maps of previous crops together with early assessment of sugar beet growth may make an early prediction of within-field variability in sugar beet yield possible. The Broom’s Barn sugar beet model failed to account for the spatial variability in sugar yield, but the simulation was greatly improved when corrected for early canopy development cover and when the simulated yield was adjusted for weeds and plant population. Further research to optimize inputs to maximise sugar yield should target the irrigation and fertilizing of areas within fields with low canopy cover early in the season.
Resumo:
Background and Aims: Phosphate (Pi) is one of the most limiting nutrients for agricultural production in Brazilian soils due to low soil Pi concentrations and rapid fixation of fertilizer Pi by adsorption to oxidic minerals and/or precipitation by iron and aluminum ions. The objectives of this study were to quantify phosphorus (P) uptake and use efficiency in cultivars of the species Coffea arabica L. and Coffea canephora L., and group them in terms of efficiency and response to Pi availability. Methods: Plants of 21 cultivars of C. arabica and four cultivars of C. canephora were grown under contrasting soil Pi availabilities. Biomass accumulation, tissue P concentration and accumulation and efficiency indices for P use were measured. Key Results: Coffee plant growth was significantly reduced under low Pi availability, and P concentration was higher in cultivars of C. canephora. The young leaves accumulated more P than any other tissue. The cultivars of C. canephora had a higher root/shoot ratio and were significantly more efficient in P uptake, while the cultivars of C. arabica were more efficient in P utilization. Agronomic P use efficiency varied among coffee cultivars and E16 Shoa, E22 Sidamo, Iêmen and Acaiá cultivars were classified as the most efficient and responsive to Pi supply. A positive correlation between P uptake efficiency and root to shoot ratio was observed across all cultivars at low Pi supply. These data identify Coffea genotypes better adapted to low soil Pi availabilities, and the traits that contribute to improved P uptake and use efficiency. These data could be used to select current genotypes with improved P uptake or utilization efficiencies for use on soils with low Pi availability and also provide potential breeding material and targets for breeding new cultivars better adapted to the low Pi status of Brazilian soils. This could ultimately reduce the use of Pi fertilizers in tropical soils, and contribute to more sustainable coffee production.
Resumo:
To develop targeted methods for treating bacterial infections, the feasibility of using glycoside derivatives of the antibacterial compound L-R-aminoethylphosphonic acid (L-AEP) has been investigated. These derivatives are hypothesized to be taken up by bacterial cells via carbohydrate uptake mechanisms, and then hydrolysed in situ by bacterial borne glycosidase enzymes, to selectively afford L-AEP. Therefore the synthesis and analysis of ten glycoside derivatives of L-AEP, for selective targeting of specific bacteria, is reported. The ability of these derivatives to inhibit the growth of a panel of Gram-negative bacteria in two different media is discussed. β-Glycosides (12a) and (12b) that contained L-AEP linked to glucose or galactose via a carbamate linkage inhibited growth of a range of organisms with the best MICs being <0.75 mg/ml; for most species the inhibition was closely related to the hydrolysis of the equivalent chromogenic glycosides. This suggests that for (12a) and (12b), release of L-AEP was indeed dependent upon the presence of the respective glycosidase enzyme.
Resumo:
Botrytis species are generally considered to be aggressive, necrotrophic plant pathogens. By contrast to this general perception, however, Botrytis species could frequently be isolated from the interior of multiple tissues in apparently healthy hosts of many species. Infection frequencies reached 50% of samples or more, but were commonly less, and cryptic infections were rare or absent in some plant species. Prevalence varied substantially from year to year and from tissue to tissue, but some host species routinely had high prevalence. The same genotype was found to occur throughout a host, representing mycelial spread. B. cinerea and B. pseudocinerea are the species that most commonly occur as cryptic infections, but phylogenetically distant isolates of Botrytis were also detected, one of which does not correspond to previously described species. Sporulation and visible damage occurred only when infected tissues were stressed, or became mature or senescent. There was no evidence of cryptic infection having a deleterious effect on growth of the host, and prevalence was probably greater in plants grown in high light conditions. Isolates from cryptic infections were often capable of causing disease (to varying extents) when spore suspensions were inoculated onto their own host as well as on distinct host species, arguing against co-adaptation between cryptic isolates and their hosts. These data collectively suggest that several Botrytis species, including the most notorious pathogenic species, exist frequently in cryptic form to an extent that has thus far largely been neglected, and do not need to cause disease on healthy hosts in order to complete their life-cycles.
Resumo:
This study presents the first analysis of the energetics associated with a hybrid cyclone`s transition in the Southern Hemisphere, Hurricane Catarina ( March 2004). Catarina has earned a place in history as the first documented South Atlantic hurricane, but its unusual tropical transition is still poorly understood. Here we show that Catarina`s transition was preceded by marked environmental changes in the Lorenz energy cycle, with an abrupt shift from a baroclinic to a predominantly barotropic state. Such changes help to explain the unusual vortex`s growth until its transition was completed. Although the vortex`s energy flux is not explicitly calculated, a likely mechanism linking the environmental energetics with Catarina is the extraction of eddy kinetic energy from horizontal momentum and heat transfers within the through component of the blocking. The results advance the understanding of this rare event and suggest that the technique has a great potential to study transitioning systems in general.
Resumo:
Analysis of experimental interlocking blocks of concrete with addition of residues of process the tires retreading production. With the population growth in recent years, industry in general has adjusted itself to resulting demand. the industry of tire retreading generates residues that have been discarded without any control. this adds to environmental pollution and promotes the proliferation of vectors harmful to health, aiming to find an application for this type of residues, this study presents experimental results to interlocking concrete block pavements, with addition of residues tires, interlocking blocks were built up and we determined, through laboratory tests, the need to set the mark that provide greater return regarding analyzed characteristics, there are four types of dosage of concrete with residues tires. We accomplished tests of compression strength, water absorption and resistance to impact. Through the preliminary results, we verified that are satisfactory, confirming the possibility of applying this type of interlocking block in environments with low demand, which would bring the economy of natural sources of aggregates, beyond ecological benefits through the reuse of residues from retreading of tires.
Resumo:
Araucaria angustifolia is an endangered Brazilian native conifer tree. The aim of the present work was to identify differentially expressed proteins between mature and germinated embryos of A. angustifolia, using one and two dimensional gel electrophoresis approaches followed by protein identification by tandem mass spectrometry. The identities of 32 differentially expressed protein spots from two dimensional gel maps were successfully determined, including proteins and enzymes involved in storage mobilization such as the vicilin-like storage protein and proteases. A label free approach, based on spectral counts, resulted in detection of 10 and 14 mature and germinated enriched proteins, respectively. Identified proteins were mainly related to energetic metabolism pathways, translational processes. oxidative stress regulation and cellular signaling. The integrated use of both strategies permitted a comprehensive protein expression overview of changes in germinated embryos in relation to matures, providing insights into the this process in a recalcitrant seed species. Applications of the data generated on the monitoring and control of in vitro somatic embryos were discussed. Published by Elsevier Ltd.