676 resultados para Amortecimento (Mecanica)
Resumo:
Plasma DC hollow cathode has been used for film deposition by sputtering with release of neutral atoms from the cathode. The DC Plasma Ar-H2 hollow cathode currently used in the industry has proven to be effective in cleaning surfaces and thin film deposition when compared to argon plasma. When we wish to avoid the effects of ion bombardment on the substrate discharge, it uses the post-discharge region. Were generated by discharge plasma of argon and hydrogen hollow cathode deposition of thin films of titanium on glass substrate. The optical emission spectroscopy was used for the post-discharge diagnosis. The films formed were analyzed by mechanical profilometry technique. It was observed that in the spectrum of the excitation lines of argon occurred species. There are variations in the rate of deposition of titanium on the glass substrate for different process parameters such as deposition time, distance and discharge working gases. It was noted an increase in intensity of the lines of argon compared with the lines of titanium. Deposition with argon and hydrogen in glass sample observed a higher rate deposition of titanium as more closer the sample was in the discharge
Resumo:
Many applications require that the plasma discharge is produced apart from the surface to be processed, thus preventing damage caused by bombardment and/or plasma radiation. In the post-discharge regime in various applications thermally sensitive materials can be used. In this work, active species produced by discharge and post-discharge hollow cathode were diagnosed by optical emission spectroscopy and mass spectrometry. The discharge was produced with the gases Ar and Ar - N2 gas flow ranging from 1 to 6 cm3/min and electric current between 150 to 600 mA. It was estimated that the ion density inside the hollow cathode, with 2 mm diameter ranged between 7.71 and 14.1 x 1015 cm-3. It was observed that the gas flow and the electric current changes the emission intensity of Ar and N2 species. The major ionic species detected by quadrupole mass spectrometry were Ar+ and N2+. The ratio of optical emission intensities of N2(1 +)/Ar(811 nm) was related to the partial pressure of N2 after the hollow cathode discharge at low pressure
Resumo:
The composites manufactured with long fibres aligned in a single direction, and overlay has been shown to have better performance than the short fibers randomly distributed. In particular, the lignocellulosic fibers extracted from the sisal leaves, used in conjunction with the epoxy resin has attracted the attention of many researchers because the final properties of the system formed. In this work composites based on epoxy resin reinforced with sisal fibers were manufactured. The sisal fibres were treated with an alkaline solution of 0.06 mol/l NaOH. The treated, and untreated fibres were subjected to tension x extension tests. The composites were manufactured in the "Lossy" mold with the specifications of the samples to be produced (300x20x4 mm). The tension tests were carried out in accordance with the ASTM standards 3039 (for the composite aligned in a single direction) and ASTM D5573 (for composites in overlay), three point bending tests were performed according to ASTM D790. Analyzing the results of the tests of tension and three point bending tests, it was observed that the composites with the configuration of overlapping had the better elastic module in both tests. As to the maximum resistance to tension, the best result was the composites aligned in a single direction. Tests of absorption of water and micrographs are in progress
Resumo:
The need to build durable structures and resistant to harsh environments enabled the development of high strength concrete, these activities generate a high cement consumption, which implies factor in CO2 emissions. Often the desired strength is not achieved using only the cement composition. This study aims to evaluate the influence of pozzolans with the addition of metakaolin on the physical mechanics of high strength concrete comparing them with the standard formulation. Assays were performed to characterize the aggregates according to NBR 7211, evaluation of cement and coarse aggregate through the trials of petrography (NBR 15577-3/08) and alkali-aggregate reaction (NBR 15577-05/08). Specimens were fabricated according to NBR 5738-1/04 with additions of 0%, 4%, 6%, 8% and 10% of metakaolin for cement mortars CP V in the formulations. For evaluation of the concrete hardened in fresh state and scattering assays were performed and compressive strength in accordance with the NBR 7223/1992 and NBR 5739-8/94 respectively. The results of the characterization of aggregates showed good characteristics regarding size analysis and petrography, as well as potentially innocuous as the alkali-aggregate reaction. As to the test of resistance to compression, all the formulations with the addition of metakaolin showed higher value at 28 days of disruption compared with the standard formulation. These results present an alternative to reduce CO2 emissions, and improvements in the quality and durability of concrete, because the fine particle size of metakaolin provides an optimal compression of the mass directly influencing the strength and rheology of the dough
Resumo:
The plasma produced by Dielectric Barrier Discharge (DBD) is a promising technique for producing plasma in atmospheric pressure and has been highlighted in several areas, especially in biomedical and textile industry, this is due to the fact that the plasma generated by DBD not reaches high temperatures, enabling use it for thermally sensitive materials. But still it is necessary the development of research related to understanding of the chemical, physical and biological interaction between the non-thermal plasma at atmospheric pressure with cells, tissues, organs and organisms. This work proposes to develop equipment DBD and characterize it in order to obtain a better understanding of the process parameters of plasma production and how it behaves under the parameters adopted in the process, such as distance, frequency and voltage applied between electrodes. For this purpose two techniques were used to characterize distinct from each other. The first was the method of Lissajous figures, this technique is quite effective and accurately for complete electrical characterization equipment DBD. The second technique used was Optical Emission Spectroscopy (EEO) very effective tool for the diagnosis of plasma with it being possible to identify the excited species present in the plasma produced. Finally comparing the data obtained by the two techniques was possible to identify a set of parameters that optimize the production when combined DBD plasma atmosphere in the equipment was built precisely in this condition 0.5mm-15kV 600Hz, giving way for further work
Resumo:
Emerald mining is an important area of the economy in Brazil, country which is in second place among the exporting nations of this gem. Due to the process of extraction, a great amount of reject is generated. Since there is no appropriate destination, the reject is abandoned around the mining industries, contributing to environment degradation. Nowadays, some of the most relevant things to an industry in general are: energy conservation, cost reduction, quality and productivity enhancement. The production of isolating, transformed refractory materials achieves the sustainability dimension when protection of the environment is incorporated to such process. This work investigates the use of emerald mining rejects in the ceramic body of refractory materials, aiming at obtaining a product whose characteristics are compatible with commercial products and, at the same time, allow the use of such rejects to solve the environmental issue caused by its disposal in nature. X-ray fluorescence analysis show that the emerald reject obtained after the flotation to extract molybdenum and mica has 70% of silica and alumina (SiO2+Al2O3) and 21% of a basic oxides and alkaline metals and earthy alkaline mixture (Na2O, K2O, CaO e MgO). Because of the significant amount of silica and alumina present in the reject, four refractory ceramic bodies were prepared. Samples with a rectangular shape and dimensions 100x50x10 mm were pressed in a steel mold at 27,5 MPa and sintered at 1200ºC for 40 min. under environment atmosphere in a resistive oven. The sintered samples were characterized in relation to the chemical composition (FRX), mineralogical composition (DRX), microstructure (MEV) and physical and mechanical properties. The results indicate that the mixture with 45% of reject, 45% of alumina and 10% of kaolin presents a refractory quality of 1420ºC, dimensional linear variation below 2.00%, apparent specific mass of 1,56 g/cm3 and porosity of 46,68%, which demonstrates the potential use of the reject as raw material for the industry of isolating transformed refractory materials
Resumo:
The proposed design provides a solar furnace alternative, box-like, low-cost operation to be used in cooking, comprising three scrap tires to make the recycling thereof. The tires were coupled to each other, forming an enclosure, which stood on its bottom covered by a parable multiple mirrors made from a urupema (sieve indigenous) and the inner sides of the oven aluminum sheet painted black, obtained from beer cans, thus being made to obtain the increase in the concentration of solar radiation incident on the inside of the prototype studied. Two tires were attached, leaving an air layer between them, with the function of thermal insulation. The third tire aimed to support the other two and thermally insulate the bottom of the oven. Externally was placed a metal frame with flat mirrors to reflect the incident rays into the oven, having a mobility to correct the apparent motion of the sun. Its primary feature is the viability of clean, renewable energy to society by tackling the ecological damage caused by the large-scale use of wood for cooking food. The tests show that the furnace reached the maximum temperature of 123.8 °C and baking various foods such as pizza, bun, and other lasagne in an average time 50 minutes. Proves the feasibility of using the oven. Presenting still able to improve their performance with the addition of new materials, equipment and techniques
Resumo:
The scarcity of farmland, reducing the supply of irrigation water and lack of technologies for conservation, makes the globalized world facing serious difficulties in the production of food for its population. The most viable outlet for this dilemma is the dissemination of technologies, economically viable and available to the whole population, for dehydration of perishable foods produced. This paper presents a solar dryer of direct exposure to the production of dried fruit, made from recycled polyethylene drum of 200 liters, used for storing water or trash. The drum was sectioned in half in its longitudinal axis and has its halves together forming a trough-like structure. It describes the processes of construction and assembly of solar dryer proposed, whose main characteristic its low cost, and was designed for use by people with low income, for processing fruits widely available in our region (mango, banana, guava, cashew, pineapple, tomato and others) in dried fruit and flour, contributing significantly to increase the life of these foods. The nuts and flours can be used for own consumption and for marketing jobs and income generation. Tests were conducted to diagnose the feasibility of using solar dryer for the various types of tropical fruits. Were also compared parameters such as drying times and thermal efficiency obtained with the prototype found in the specialized literature in food dehydration. The drying times in the dryer were obtained competitive with those obtained in other models of dryers LMHES developed
Resumo:
The biodiesel use has become important due to its renewable character and to reduce environmental impacts during the fuel burning. Theses benefit will be valid if the fuel shows good performance, chemistry stability and compatibility with engines. Biodiesel is a good fuel to diesel engines due to its lubricity. Then, the aimed of this study was to verify the physicalchemistry properties of biodiesel and their correlations with possible elastomers damage after biodiesel be used as fuel in an injection system. The methodology was divided in three steps: biodiesels synthesis by transesterification of three vegetable oil (soybean, palm and sunflower) and their physical-chemistry characterization (viscosity, oxidative stability, flash point, acidity, humidity and density); pressurized test of compatibility between elastomers (NBR and VITON) and biodiesel, and the last one, analyze of biodiesels lubricity by tribological test ball-plan( HFRR). Also, the effect of mixture of biodiesel and diesel in different concentrations was evaluated. The results showed that VITON showed better compatibility with all biodiesel blends in relation to NBR, however when VITON had contact with sunflower biodiesel and its blends the swelling degree suffer higher influences due to biodiesel humidity. For others biodiesels and theirs blends, this elastomer kept its mechanical properties constant. The better tribological performance was observed for blends with high biodiesel concentration, lower friction coefficient was obtained when palm biodiesel was used. The main mechanisms observed during the HFRR tests were abrasive and oxidative wear
Resumo:
Cotton is a hydrofilic textile fiber and, for this reason, it changes its properties according to the environment changes. Moisture and Temperature are the two most important factors that lead a cotton Spinning sector and influence its quality. Those two properties can change the entire Spinning process. Understanding this, moisture and temperature must be kept under control when used during the Spinning process, once the environment is hot and dry, the cotton yarns absorb moisture and lose the minimal consistency. According to this information, this paper was developed testing four types of cotton yarns, one kind of cotton from Brazil and the others from Egypt. The yarns were exposed to different temperatures and moisture in five different tests and in each test, six samples that were examined through physical and mechanical tests: resistance, strength, tenacity, yarn´s hairness, yarn´s evenness and yarn´s twisting. All the analysis were accomplished at Laboratório de Mecânica dos Fluídos and at COATS Corrente S.A., where, it was possible to use the equipments whose were fundamental to develop this paper, such as the STATIMAT ME that measures strength, tenacity, Zweigler G566, that measure hairiness in the yarn, a skein machine and a twisting machine. The analysis revealed alterations in the yarn´s characteristics in a direct way, for example, as moisture and temperature were increased, the yarn´s strength, tenacity and hairness were increased as well. Having the results of all analysis, it is possible to say that a relatively low temperature and a high humidity, cotton yarns have the best performance
Resumo:
Licuri is a palm tree from the semiarid regions of Bahia State, Brazil. It is an important source of food and feed in that region, since their nuts are commonly eaten by humans and used as maize substitute for poultry feeding. The aim of this dissertation is to study the feasibility for use of natural convection solar dryers and forced being compared with the traditional drying outdoors for drying coconut licuri Syagrus coronate. The study led to the construction of two prototype solar dryer for carrying out experiments proving: model Solar Drying System Direct Exposure to Natural Convection built with wood, has a drying chamber with direct cover transparent glass laminates 4 mm, using techniques for proper isolation of the drying chamber. The two prototypes were comparatively analyzed for performance and drying efficiency with traditional extractive use by the community. Were evaluated the variables: time and drying rates and quality of the final samples of coconut licuri. The fruits were harvested and brought the town of Ouricuri, in the city of Caldeirão Grande, BA for the experiments comparing the three methods of drying was used a standard load of 4.0 kg The quantitative analysis for the result of the drying rate was found in 74% yield and 44% for natural and forced convection respectively compared with the traditional drying. These drying rates represent variation 3-5 times lower. Drying using forced convection licuri showed better quality, was found in a reddish pulp, representing the quantities that were kept of the nutrient beta carotene, and not notice the flavor change from the previous system, the final cost of construction of this system were higher . The prototypes built competitive advantage and had testified fully to resolve the technical difficulties previously encountered in the production of products made of coconut licuri. Allowing add value and increase their potential use for the fruit extractive communities of semi-arid region of Bahia
Resumo:
The technique of ion nitriding, despite being fully consolidated in the industry, has great limitations when applied to the treatment of small parts. This is because effects that occur due to non-uniformity of the electric field, generate localized heating in parts, damaging the uniformity of nitrided layer. In addition, because the samples are treated static parts thereof are untreated. To expand the use of plasma nitriding, this work presents the development, assembly and testing of a prototype plasma reactor with rotatory cathodic cage [patent pending], able to meet these needs, giving the material a uniform treatment and opening doors to industrial scale production. The samples tested with hexagonal nuts are 6.0 mm in diameter, made of stainless steel AISI 304 nitrided at a pressure of 1 mbar in an atmosphere of 20% H2 + 80% N2 for 1 h. After treatment, testing visual inspection, optical microscopy and microhardness were carried out to check the effectiveness of the process for uniformity and hardness of the parts. All samples exhibited uniform color, and matte brownish, unlike the untreated samples, silver color and gloss. The hardness of the surface (top and sides) was 65% and even higher than the original hardness. The nitrided layer showed great uniformity in microstructure and thickness. It is concluded, therefore, that the unit was effective constructed for the purposes for which it was designed
Resumo:
Os polímeros biodegradáveis, como o poliácido láctico (PLA) apesar de consolidado nos campos farmacêuticos, médico e biomédico como biomateriais úteis para aplicações variadas, porém, depende da necessidade de funcionalizar a sua superfície estudando suas propriedades tais como hidrofilidade e hidrofobicidade favorecendo a interação do polímero com os materiais de aplicação farmacêutica, médica e biomédica. Este trabalho tem como objetivo produzir um material com características diferentes em cada um de seus lados, sendo um lado hidrofílico e o outro hidrofóbico. O substrato têxtil utilizado neste estudo foi um tecido de malha de composição 100% PLA que é biodegradável e biocompatível, o que possibilita sua aplicação na área biomédica. Para modificação superficial foi utilizado o tratamento a plasma de baixa pressão. A técnica de modificação de superfície por plasma foi escolhida por ser uma tecnologia limpa, anticorrosiva e não tóxica ao contrario de muitos processos químicos convencionais utilizados na indústria têxtil, além disso, não afeta as propriedades de massa do substrato. Neste estudo, um lado da superfície do substrato foi tratado com plasma oxigênio, argônio e nitrogênio, para o trabalho de melhoria da hidrofilidade da superfície e metano para a hidrofobicidade da amostra. A espectroscopia de emissão ótica (OEE) foi utilizada para fazer o diagnóstico das espécies do plasma durante o tratamento. Após o tratamento a plasma as amostras foram caracterizadas por medidas de ângulo de contato, microscopia eletrônica de varredura (MEV), Espectroscopia de fotoelétrons de raios-X (XPS), Infravermelho com Transformada de Fourier (FTIR) de reflexão total atenuada (ATR), medidas da área de espalhamento do líquido e arraste vertical. Onde foi caracterizado o aumento e diminuição da molhabilidade das amostras tratadas por plasma bem como as variáveis que contribuíram para tal efeito. O tratamento das amostras de PLA com O2 + CH4 apresenta comportamento hidrofílico no lado tratado com O2, apresentando aumento de rugosidade e grupos funcionais e no lado tratado com CH4, apresentando a formação de um filme polimérico formado sobre a superfície da amostra. O tratamento com N2 + CH4 apresenta comportamento hidrofóbico, porém com variações no fluxo do CH4 tem-se um controle da molhabilidade na superfície das amostras, podendo ir de hidrofóbico a hidrofílico, neste tratamento as amostras apresentaram pequenas diferenças de molhabilidade entre os lados tratados com plasma de N2 e com plasma de CH4
Resumo:
O gradiente térmico da superfície para o interior do sólido depende da taxa de colisões das partículas e da condutividade térmica do material utilizado. Quando um sólido é imerso em plasma, a transferência de energia ocorre por radiação e colisões das partículas sobre a superfície do material. Dependendo da taxa de colisões das particulas e da condutividade térmica do sólido existirão gradientes térmicos da superfície para o interior das amostras, ocorrendo picos térmicos na superficie, ou seja, o aquecimento pontual nas regiões de colisões. A fim de estudar esse efeito, amostras de aço rápido AISI M35 cujos valores de dureza são fortemente sensíveis à temperatura de revenimento, foram utilizadas como micro sensores térmicos. Amostras foram temperadas em forno resistivo e, em seguida, parte das mesmas foram revenidas em forno resistivo e a outra parte em plasma. A partir do gráfico da dureza (Hv) em função da temperatura (T) das amostras revenidas em forno resistivo foi possível obter uma função Hv(T) para determinação indireta do perfil térmico das amostras tratadas em plasma. As amostras foram revenidas em plasma utilizando temperatura de referência igual a 550 oC. Em seguida foi obtido o perfil de dureza dessas amostras ao longo da seção transversal e, subsequentemente, o perfil de temperatura. Verificou-se que amostras tratadas em plasma, ao contrário daquelas tratadas em forno resistivo, apresentaram gradiente de temperatura da superfície para o núcleo. Além disso, verificou-se que as amostras tratadas em configuração planar apresentaram gradientes térmicos inferiores àquelas tratadas em configuração cátodo oco, variando de 20 a 120 °C, respectivamente
Resumo:
Lubricant is responsible for reducing the wear on the friction protect the metal against oxidation, corrosion and dissipates excess heat, making it essential for the balance of a mechanical system, consequently prolonging the useful life of such a system. The origin of lubricating oils is usually mineral being extracted from the petroleum. But the search for a new source of production of lubricants and fuels it is necessary to meet future demands and reduce the possible environmental damage. For this reason, looking alternative means to produce certain products derived from petroleum, such as biodiesel, for example. Returning to the realm of lubricants, also one realizes this need for new raw materials for their production. Vegetable oil is a renewable resource and biodegradable, and its use entails advantages in environmental, social and economic. The development of this project aims to characterize the carnauba oil as a lubricant plant, or biolubricant. To analyze the oil carnauba tests as checking density, flash point, fire point, viscosity, viscosity, acid number, pH, copper corrosion, thermal conductivity and thermal resistivity were developed. In addition, for conducting the wear on the friction and the gradient of the system temperature, the analysis equipment is designed for wear on the friction. Based on these results, it is observed that the oil carnauba show good correlation to its application as biolubricant