997 resultados para Age, calculated calendar years


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A sediment-sampling program was carried out in the Nares Strait region during the Nares 2001 Expedition to obtain cores for high-resolution palaeoceanographic studies of late Pleistocene-Holocene climate change. Long cores (>4 m) were obtained from basins near Coburg Island, Jones Sound, John Richardson Fiord off Kane Basin, and in northeastern Hall Basin. Short cores and grab samples were taken on shelves east and west of northern Smith Sound and in Kennedy Channel. Detailed studies of sediment texture, stable isotopes, microfossils and palynomorphs were made on the longest cores from Jones Sound and Hall Basin at the southern and northern ends of the Nares Strait region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sm-Nd concentrations and Nd isotopes were investigated in the fine fraction of two Labrador Sea cores to reconstruct the deep circulation patterns through changes in sedimentary supply since the last glacial stage. Three sources are involved: the North American Shield, Palaeozoic rocks from northeastern Greenland, and mid-Atlantic volcanism. The variable input of these sources provides constraints on the relative sedimentary supply, in conjunction with inception of deep currents. During the last glacial stage a persistent but sluggish current occurred inside the Labrador Basin. An increasing discharge of volcanic material driven by the North East Atlantic Deep Water is documented since 14.3 kyr, signaling the setup of a modern-like deep circulation pattern throughout the Labrador, Irminger, and Iceland basins. During the last deglacial stage the isotopic record was punctually influenced by erosion processes related mainly to ice-sheet instabilities, especially 11.4, 10.2, and 9.2 kyr ago.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background. In over 30 years, the prevalence of overweight for children and adolescents has increased across the United States (Barlow et al., 2007; Ogden, Flegal, Carroll, & Johnson, 2002). Childhood obesity is linked with adverse physiological and psychological issues in youth and affects ethnic/minority populations in disproportionate rates (Barlow et al., 2007; Butte et al., 2006; Butte, Cai, Cole, Wilson, Fisher, Zakeri, Ellis, & Comuzzie, 2007). More importantly, overweight in children and youth tends to track into adulthood (McNaughton, Ball, Mishra, & Crawford, 2008; Ogden et al., 2002). Childhood obesity affects body functions such as the cardiovascular, respiratory, gastrointestinal, and endocrine systems, including emotional health (Barlow et al., 2007, Ogden et al., 2002). Several dietary factors have been associated with the development of obesity in children; however, these factors have not been fully elucidated, especially in ethnic/minority children. In particular, few studies have been done to determine the effects of different meal patterns on the development of obesity in children. Purpose. The purpose of the study is to examine the relationships between daily proportions of energy consumed and energy derived from fat across breakfast, lunch, dinner, and snack, and obesity among Hispanic children and adolescents. Methods. A cross-sectional design was used to evaluate the relationship between dietary patterns and overweight status in Hispanic children and adolescents 4-19 years of age who participated in the Viva La Familia Study. The goal of the Viva La Familia Study was to evaluate genetic and environmental factors affecting childhood obesity and its co-morbidities in the Hispanic population (Butte et al., 2006, 2007). The study enrolled 1030 Hispanic children and adolescents from 319 families and examined factors related to increased body weight by focusing on a multilevel analysis of extensive sociodemographic, genetic, metabolic, and behavioral data. Baseline dietary intakes of the children were collected using 24-hour recalls, and body mass index was calculated from measured height and weight, and classified using the CDC standards. Dietary data were analyzed using a GEE population-averaged panel-data model with a cluster variable family identifier to include possible correlations within related data sets. A linear regression model was used to analyze associations of dietary patterns using possible covariates, and to examine the percentage of daily energy coming from breakfast, lunch, dinner, and snack while adjusting for age, sex, and BMI z-score. Random-effects logistic regression models were used to determine the relationship of the dietary variables with obesity status and to understand if the percent energy intake (%EI) derived from fat from all meals (breakfast, lunch, dinner, and snacks) affected obesity. Results. Older children (age 4-19 years) consumed a higher percent of energy at lunch and dinner and less percent energy from snacks compared to younger children. Age was significantly associated with percentage of total energy intake (%TEI) for lunch, as well as dinner, while no association was found by gender. Percent of energy consumed from dinner significantly differed by obesity status, with obese children consuming more energy at dinner (p = 0.03), but no associations were found between percent energy from fat and obesity across all meals. Conclusions. Information from this study can be used to develop interventions that target dietary intake patterns in obesity prevention programs for Hispanic children and adolescents. In particular, intervention programs for children should target dietary patterns with energy intake that is spread throughout the day and earlier in the day. These results indicate that a longitudinal study should be used to further explore the relationship of dietary patterns and BMI in this and other populations (Dubois et al., 2008; Rodriquez & Moreno, 2006; Thompson et al., 2005; Wilson et al., in review, 2008). ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A multiproxy study of palaeoceanographic and climatic changes in northernmost Baffin Bay shows that major environmental changes have occurred since the deglaciation of the area at about 12 500 cal. yr BP. The interpretation is based on sedimentology, benthic and planktonic foraminifera and their isotopic composition, as well as diatom assemblages in the sedimentary records at two core sites, one located in the deeper central part of northernmost Baffin Bay and one in a separate trough closer to the Greenland coast. A revised chronology for the two records is established on the basis of 15 previously published AMS 14C age determinations. A basal diamicton is overlain by laminated, fossil-free sediments. Our data from the early part of the fossiliferous record (12 300 - 11 300 cal. yr BP), which is also initially laminated, indicate extensive seasonal sea-ice cover and brine release. There is indication of a cooling event between 11 300 and 10 900 cal. yr BP, and maximum Atlantic Water influence occurred between 10 900 and 8200 cal. yr BP (no sediment recovery between 8200 and 7300 cal. yr BP). A gradual, but fluctuating, increase in sea-ice cover is seen after 7300 cal. yr BP. Sea-ice diatoms were particularly abundant in the central part of northernmost Baffin Bay, presumably due to the inflow of Polar waters from the Arctic Ocean, and less sea ice occurred at the near-coastal site, which was under continuous influence of the West Greenland Current. Our data from the deep, central part show a fluctuating degree of upwelling after c. 7300 cal. yr BP, culminating between 4000 and 3050 cal. yr BP. There was a gradual increase in the influence of cold bottom waters from the Arctic Ocean after about 3050 cal. yr BP, when agglutinated foraminifera became abundant. A superimposed short-term change in the sea-surface proxies is correlated with the Little Ice Age cooling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The palaeoclimatic conditions during the Last Glacial Maximum (LGM) of southern South America and especially latitudinal shifts of the southern westerly wind belt are still discussed controversially. Longer palaeoclimatic records covering the Late Quaternary are rare. A particularly sensitive area to Late Quaternary climatic changes is the Norte Chico, northern Chile, because of its extreme climatic gradients. Small shifts of the present climatic zonation could cause significant variations of the terrestrial sedimentary environment which would be recorded in marine terrigenous sediments. To unveil the history of shifting climatic zones in northern Chile, we present a sedimentological study of a marine sediment core (GeoB 3375-1) from the continental slope off the Norte Chico (27.5°S). Sedimentological investigations include bulk- and silt grain-size determinations by sieving, Atterberg separation, and detailed SediGraph analyses. Additionally, clay mineralogical parameters were obtained by X-ray diffraction methods. The 14C-dated core, covering the time span from approximately 10,000 to 120,000 cal. yr B.P., consists of hemipelagic sediments. Terrigenous sedimentological parameters reveal a strong cyclicity, which is interpreted in terms of variations of sediment provenance, modifications of the terrestrial weathering regimes, and modes of sediment input to the ocean. These interpretations imply cyclic variations between comparatively arid climates and more humid conditions with seasonal precipitation for northern Chile (27.5°S) through the Late Quaternary. The cyclicity of the terrigenous sediment parameters is strongly dominated by precessional cycles. For the palaeoclimatic signal, this means that more humid conditions coincide with maxima of the precession index, as e.g. during the LGM. Higher seasonal precipitation for this part of Chile is most likely derived from frontal winter rain of the Southern Westerlies. Thus, the data presented here favour not only an equatorward shift of this atmospheric circulation system during the LGM, but also precession-controlled latitudinal movements throughout the Late Quaternary. Precessional forcing of latitudinal movements of the westerly atmospheric circulation system may be conceivable through teleconnections to the Northern Hemisphere monsoonal system in the Atlantic Ocean region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Radiocarbon age differences for pairs of coexisting late glacial age benthic and planktic foraminifera shells handpicked from 10 sediment samples from a core from a depth of 2.8 km in the western equatorial Pacific are not significantly different from that of 1600 years calculated from measurements on prenuclear seawater. This places a lower limit on the depth of the interface for the hypothetical radiocarbon-depleted glacial age seawater reservoir required to explain the 190 per mil drop in the 14C/C for atmospheric CO2, which occurred during the mystery interval (17.5 to 14.5 calendar years ago). These measurements restrict the volume of this reservoir to be no more than 35% that of the ocean. Further, 14C measurements on a single Last Glacial Maximum age sample from a central equatorial Pacific core from a depth of 4.4 km water fail to reveal evidence for the required 5- to 7-kyr age difference between benthic and planktic foraminifera shells if the isolated reservoir occupied only one third of the ocean. Nor does the 13C record for benthic forams from this abyssal core yield any evidence for the excess respiration CO2 expected to be produced during thousands of years of isolation. Nor, as indicated by the presence of benthic foraminifera, was the dissolved oxygen used up in this abyssal water.