928 resultados para Adsorption capacity
Resumo:
In this article, a new hybrid model for estimating the pore size distribution of micro- and mesoporous materials is developed, and tested with the adsorption data of nitrogen, oxygen, and argon on ordered mesoporous materials reported in the literature. For the micropore region, the model uses the Dubinin-Rudushkevich (DR) isotherm with the Chen-Yang modification. A recent isotherm model of the authors for nonporous materials, which uses a continuum-mechanical model for the multilayer region and the Unilan model for the submonolayer region, has been extended for adsorption in mesopores. The experimental data is inverted using regularization to obtain the pore size distribution. The present model was found to be successful in predicting the pore size distribution of pure as well as binary physical mixtures of MCM-41 synthesized with different templates, with results in agreement with those from the XRD method and nonlocal density functional theory. It was found that various other recent methods, as well as the classical Broekhoff and de Beer method, underpredict the pore diameter of MCM-41. The present model has been successfully applied to MCM-48, SBA's, CMK, KIT, HMS, FSM, MTS, mesoporous fly ash, and a large number of other regular mesoporous materials.
Resumo:
This article reports on the liquid phase adsorption of flavour esters onto granular activated carbon. Ethyl propionate, ethyl butyrate, and ethyl isovalerate were used as adsorbates, and Filtrasorb 400 activated carbon was chosen as the adsorbent. Sips, Toth, Unilan, and Dubinin-Radushkevich isotherm equations which are generally used for heterogeneous adsorbents were used to fit the data. Although satisfactory in fitting the data, inconsistency in parameter values indicated these models to be inadequate. On the other hand the Dubinin-Radushkevich model gave more consistent and meaningful parameter values and adsorption capacities. By employing the Dubinin-Radushkevich equation, the limiting volume of the adsorbed space, which equals the accessible micropore volume, was determined, and found to correlate with the value from carbon dioxide adsorption.
Resumo:
In the present work, various theories predicting the critical diameter for the absence of capillary condensation and hysteresis are applied to experimental adsorption isotherms of vapors on regular mesoporous materials. Among the various theories studied, the tensile strength approximation proposed by the authors was found to be the most successful. Reversibility of nitrogen adsorption at 77.4 K was studied on pure MCM-41 of various pore sizes, as well as mixtures of pure MCM-41 samples in a 1:1 ratio. The results of PSD and hysteresis on MCM-41 mixtures are close to that expected from studies of the pure materials. The estimates of hysteresis critical temperature and diameter of MCM-41, HMS, FSM and KIT materials are also provided.
Resumo:
Tarpon have high resting or routine hematocrits (Hct) (37.6+/-3.4%) and hemoglobin concentrations (120.6+/-7.3 g 1(-1)) that increased significantly following bouts of angling-induced exercise (51.9+/-3.7% and 142.8+/-13.5 g 1(-1), respectively). Strenuous exercise was accompanied by an approximately tenfold increase in blood lactate and a muscle metabolite profile indicative of a high energy demand teleost. Routine blood values were quickly restored only when this facultative air-breathing fish was given access to atmospheric air. In vitro studies of oxygen transport capacity, a function of carrying capacity and viscosity, revealed that the optimal Hct range corresponded to that observed in fish under routine behaviour. During strenuous exercise however, further increase in viscosity was largely offset by a pronounced reduction in the shear-dependence of blood which conformed closely to an ideal Newtonian fluid. The mechanism for this behaviour of the erythrocytes appears to involve the activation of surface adrenergic receptors because pre-treatment with propranolol abolished the response. High levels of activity in tarpon living in hypoxic habitats are therefore supported by an elevated Hct with adrenergically mediated viscosity reduction, and air-breathing behaviour that enables rapid metabolic recovery. (C) 2002 Elsevier Science Inc. All rights reserved.
Resumo:
Overcommitment of development capacity or development resource deficiencies are important problems in new product development (NPD). Existing approaches to development resource planning have largely neglected the issue of resource magnitude required for NPD. This research aims to fill the void by developing a simple higher-level aggregate model based on an intuitive idea: The number of new product families that a firm can effectively undertake is bound by the complexity of its products or systems and the total amount of resources allocated to NPD. This study examines three manufacturing companies to verify the proposed model. The empirical results confirm the study`s initial hypothesis: The more complex the product family, the smaller the number of product families that are launched per unit of revenue. Several suggestions and implications for managing NPD resources are discussed, such as how this study`s model can establish an upper limit for the capacity to develop and launch new product families.
Resumo:
In this paper, we propose a new nonlocal density functional theory characterization procedure, the finite wall thickness model, for nanoporous carbons, whereby heterogeneity of pore size and pore walls in the carbon is probed simultaneously. We determine the pore size distributions and pore wall thickness distributions of several commercial activated carbons and coal chars, with good correspondence with X-ray diffraction. It is shown that the conventional infinite wall thickness approach overestimates the pore size slightly. Pore-pore correlation has been shown to have a negligible effect on prediction of pore size and pore wall thickness distributions for small molecules such as argon used in characterization. By utilizing the structural parameters (pore size and pore wall thickness distribution) in the generalized adsorption isotherm (GAI) we are able to predict adsorption uptake of supercritical gases in BPL and Norit RI Extra carbons, in excellent agreement with experimental adsorption uptake data up to 60 MPa. The method offers a useful technique for probing features of the solid skeleton, hitherto studied by crystallographic methods.
Resumo:
The problem of the negative values of the interaction parameter in the equation of Frumkin has been analyzed with respect to the adsorption of nonionic molecules on energetically homogeneous surface. For this purpose, the adsorption states of a homologue series of ethoxylated nonionic surfactants on air/water interface have been determined using four different models and literature data (surface tension isotherms). The results obtained with the Frumkin adsorption isotherm imply repulsion between the adsorbed species (corresponding to negative values of the interaction parameter), while the classical lattice theory for energetically homogeneous surface (e.g., water/air) admits attraction alone. It appears that this serious contradiction can be overcome by assuming heterogeneity in the adsorption layer, that is, effects of partial condensation (formation of aggregates) on the surface. Such a phenomenon is suggested in the Fainerman-Lucassen-Reynders-Miller (FLM) 'Aggregation model'. Despite the limitations of the latter model (e.g., monodispersity of the aggregates), we have been able to estimate the sign and the order of magnitude of Frumkin's interaction parameter and the range of the aggregation numbers of the surface species. (C) 2004 Elsevier B.V All rights reserved.
Resumo:
Layered Double Hydroxides are a class of materials that can be described as positively charged layers of divalent and trivalent cations in the centre of edge-sharing octahedra. Cholesterol derivatives such as cholic acid are substances that play an important role in the digestion of fat components by the organism. This work presents a study on the intercalation of cholate anions in calcined MgAl-CO(3)-HDL. Isotherm experiments were performed at three different temperatures to evaluate the capacity of anion removal by sorption in the calcined LDH. The plateau was reached in all conditions. Increasing temperature results in decreasing cholate sorption. Characteristic peaks of LDH regenerated with OH(-) anions were observed at lower cholate concentrations. A peak in 2 theta equals to 7.5 degrees and peaks between 15 degrees and 20 degrees are observed. Those peaks are the same as the ones observed in the pure sodium cholate PXRD. At higher cholate concentrations the sorbed solids present PXRD related to an additional layered phase, which is related to intercalation of cholate anions with basal spacing equal to 34.3 angstrom. Thus, the cholate anions are also intercalated with a bilayer molecular arrangement at equilibrium concentrations at the isotherms plateau. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Modeling volatile organic compounds (voc`s) adsorption onto cup-stacked carbon nanotubes (cscnt) using the linear driving force model. Volatile organic compounds (VOC`s) are an important category of air pollutants and adsorption has been employed in the treatment (or simply concentration) of these compounds. The current study used an ordinary analytical methodology to evaluate the properties of a cup-stacked nanotube (CSCNT), a stacking morphology of truncated conical graphene, with large amounts of open edges on the outer surface and empty central channels. This work used a Carbotrap bearing a cup-stacked structure (composite); for comparison, Carbotrap was used as reference (without the nanotube). The retention and saturation capacities of both adsorbents to each concentration used (1, 5, 20 and 35 ppm of toluene and phenol) were evaluated. The composite performance was greater than Carbotrap; the saturation capacities for the composite was 67% higher than Carbotrap (average values). The Langmuir isotherm model was used to fit equilibrium data for both adsorbents, and a linear driving force model (LDF) was used to quantify intraparticle adsorption kinetics. LDF was suitable to describe the curves.
Resumo:
Layered Double Hydroxides are a class of materials that can be described as positively charged planar layers consisting of divalent and trivalent cations in the center of edge-sharing octahedra. The positive charge in the LDH layers must be compensated by anion intercalation. These materials have applications that include adsorption and/or sorption of anionic species. Cholic acid is one of the main acids produced by the liver. It promotes transport of lipids through aqueous systems. This work reports on the adsorption of Cholic acid anions in MgAl-CO3-LDH taking ionic strength, pH, and temperature effects into account. The adsorbent was characterized by different techniques. Cholate anion adsorption was performed at two different temperatures (298 and 323 K), two different ionic strength conditions (0.0 and 0.1 M of NaCl), and two different pH values (7.0 and 10.0). The results show that the sorption of Cholate anions in calcined LDH can remove a considerable amount of these anions from the medium. Cholate anion adsorption in the LDH with no calcining also occurs, but at a lower amount.
Resumo:
In this work we report the adsorption of phenylalanine (Phe) on Magnesium Aluminum Layered Double Hydroxides (Mg-Al-CO(3)-LDH) at two different temperatures (298 and 310 K) and under two distinct ionic strength conditions (with and without the addition 0.1 M of NaCl). The adsorption isotherms exhibit the same profile in all conditions, and they only differ in the amount of removed Phe. At lower ionic strength, the isotherms are almost identical at both temperatures, except for the last points, where the increase in temperature causes a decrease in the amount of adsorbed Phe. An increase in ionic strength results in a decrease in Phe adsorption. The electrokinetic potential decreases as the amount of adsorbed Phe increases, and only positive values are observed. This indicates that the surface of the adsorbent is not totally neutralized and suggests that more Phe could be removed by adsorption. The presence of Phe on the solid is confirmed by FTIR spectra, which present the specific bands assigned to Phe. The hydrophobicity of the amino acid probably contributes to its extraction, thus enabling the removal of a great amount of Phe. In conclusion, LDH is potentially applicable in the removal of Phe from wastewater.
Resumo:
The influence of various culture parameters on the attachment of a recombinant baculovirus to suspended insect cells was examined under normal culture conditions. These parameters included cell density, multiplicity of infection, and composition of the cell growth medium. It was found that the fractional rate of virus attachment was independent of the multiplicity of infection but dependent on the cell density. A first order mathematical model was used to simulate the adsorption kinetics and predict the efficiency of virus attachment under the various culture conditions. This calculated efficiency of virus attachment was observed to decrease at high cell densities, which was attributed to cell clumping. It was also observed that virus attachment was more efficient in Sf900II serum free medium than it was in IPL-41 serum-supplemented medium. This effect was attributed to the protein in serum which may coat the cells and so inhibit adsorption. A general discussion relating the observations made in-these experiments to the kinetics of recombinant baculovirus adsorption to suspended insect cells is presented.
Resumo:
Background Pulmonary function tests (PFT), particularly spirometry and lung diffusing capacity for carbon monoxide (DL(CO)), have been considered useful methods for the detection of the progression of interstitial asbestos abnormalities as indicated by high-resolution computed tomography (HRCT). However, it is currently unknown which of these two tests correlates best with anatomical changes over time. Methods In this study, we contrasted longitudinal changes (3-9 years follow-up) in PFTs at rest and during exercise with interstitial abnormalities evaluated by HRCT in 63 ex-workers with mild-to-moderate asbestosis. Results At baseline, patients presented with low-grade asbestosis (Huuskonen classes I-II), and most PFT results were within the limits of normality. In the follow-up, most subjects had normal spirometry, static lung volumes and arterial blood gases. In contrast, frequency of DL(CO) abnormalities almost doubled (P < 0.05). Twenty-three (36.5%) subjects increased the interstitial marks on HRCT. These had significantly larger declines in DL(CO) compared to patients who remained stable (0.88 vs. 0.31 ml/min/mm Hg/year and 3.5 vs. 1.2%/year, respectively; P < 0.05). In contrast, no between-group differences were found for the other functional tests, including spirometry (P > 0.05). Conclusions These data demonstrate that the functional consequences of progression of HRCT abnormalities in mild-to-moderate asbestosis are better reflected by decrements in DL(CO) than by spirometric changes. These results might have important practical implications for medico-legal evaluation of this patient population. Am. J. Ind. Med. 54:185-193, 2011. (c) 2010 Wiley-Liss, Inc.
Resumo:
Background: A previous study associated CD34(+) levels with NYHA functional class in heart failure patients. The aim of this study was to correlate CD34(+) levels to exercise capacity, functional class, quality of life and norepinephrine in heart failure patients. Methods: Twenty three sedentary patients (52 +/- 7 years, 78% male) answered the Minnesota Living with Heart Failure Questionnaire and rested for 20 minutes before an investigator collect a blood sample. After this, patients performed a cardiopulmonary exercise test to determine the heart rate at anaerobic and ventilatory threshold and oxygen consumption at peak effort, at anaerobic and ventilatory threshold. One other blood sample was collected during the peak effort to investigate the norepinephrine and CD34(+) levels. Results: Rest percentage of CD34(+) did not show correlation with: left ventricle ejection fraction (r = 0.03, p = 0.888), peakVO(2) (r = 0.32, p = 0.13), VO(2) at anaerobic threshold (VO(2)AT) (r = 0.03, p = 0.86), VO(2) at ventilatory threshold (VO(2)VT) (r = 0.36, p = 0.08), NYHA functional class (r = -0.2, p = 0.35), quality of life (Minnesota) (r = -0.17, p = 0.42). CD34(+) did not show correlation, either, with: peak VO(2) (r = 0.38, p = 0.06), VO(2)AT (r = 0.09, p = 0.65), VO(2)VT (r = 0.43, p = 0.4), NYHA functional class (r = -0.13, p = 0.54), quality of life (r = 0.00, p = 0.99). Conclusions: CD34(+) levels did not correlate with exercise capacity, functional class, quality of life and norepinephrine. Percentage of CD34(+) levels did not increase during the cardiopulmonary exercise test in heart failure patients. (Cardiol J 2009; 16, 5: 426-431)
Resumo:
Endomyocardial fibrosis (EMF) is a restrictive cardiomyopathy manifested mainly by diastolic heart failure. It is recognized that diastole is an important determinant of exercise capacity. The purpose of this study was to determine whether resting echocardiographic parameters might predict oxygen consumption (VO(2p)) by ergoespirometry and the prognostic role of functional capacity in EMF patients. A total of 32 patients with biventricular EMF (29 women, 55.3 +/- 11.4 years) were studied by echocardiography and ergoespirometry. The relationship between the echocardiographic indexes and the percentage of predicted VO(2p) (%VO(2p)) was investigated by the `stepwise` linear regression analysis. The median VO(2p) was 11 +/- 3 mL/kg/min and the %VO(2p) was 53 +/- 9%. There was a correlation of %VO(2p) with an average of A` at four sites of the mitral annulus (A` peak, r = 0.471, P = 0.023), E`/A` of the inferior mitral annulus (r = -0.433, P = 0.044), and myocardial performance index (r = -0.352, P = 0.048). On multiple regression analysis, only A` peak was an independent predictor of %VO(2p) (%VO(2p)= 26.34 + 332.44 x A` peak). EMF patients with %VO(2p)< 53% had an increased mortality rate with a relative risk of 8.47. In EMF patients, diastolic function plays an important role in determining the limitations to exercise and %VO(2p) has a prognostic value.