938 resultados para Add sugar
Resumo:
Patterns of increasing leaf mass per area (LMA), area-based leaf nitrogen (Narea), and carbon isotope composition (δ13C) with increasing height in the canopy have been attributed to light gradients or hydraulic limitation in tall trees. Theoretical optimal distributions of LMA and Narea that scale with light maximize canopy photosynthesis; however, sub-optimal distributions are often observed due to hydraulic constraints on leaf development. Using observational, experimental, and modeling approaches, we investigated the response of leaf functional traits (LMA, density, thickness, and leaf nitrogen), leaf carbon isotope composition (δ13C), and cellular structure to light availability, height, and leaf water potential (Ψl) in an Acer saccharum forest to tease apart the influence of light and hydraulic limitations. LMA, leaf and palisade layer thickness, and leaf density were greater at greater light availability but similar heights, highlighting the strong control of light on leaf morphology and cellular structure. Experimental shading decreased both LMA and area-based leaf nitrogen (Narea) and revealed that LMA and Narea were more strongly correlated with height earlier in the growing season and with light later in the growing season. The supply of CO2 to leaves at higher heights appeared to be constrained by stomatal sensitivity to vapor pressure deficit (VPD) or midday leaf water potential, as indicated by increasing δ13C and VPD and decreasing midday Ψl with height. Model simulations showed that daily canopy photosynthesis was biased during the early growing season when seasonality was not accounted for, and was biased throughout the growing season when vertical gradients in LMA and Narea were not accounted for. Overall, our results suggest that leaves acclimate to light soon after leaf expansion, through an accumulation of leaf carbon, thickening of palisade layers and increased LMA, and reduction in stomatal sensitivity to Ψl or VPD. This period of light acclimation in leaves appears to optimize leaf function over time, despite height-related constraints early in the growing season. Our results imply that vertical gradients in leaf functional traits and leaf acclimation to light should be incorporated in canopy function models in order to refine estimates of canopy photosynthesis.
Resumo:
Renewable hydrocarbon biofuels are being investigated as possible alternatives to conventional liquid transportation fossil fuels like gasoline, kerosene (aviation fuel), and diesel. A diverse range of biomass feedstocks such as corn stover, sugarcane bagasse, switchgrass, waste wood, and algae, are being evaluated as candidates for pyrolysis and catalytic upgrading to produce drop-in hydrocarbon fuels. This research has developed preliminary life cycle assessments (LCA) for each feedstock-specific pathway and compared the greenhouse gas (GHG) emissions of the hydrocarbon biofuels to current fossil fuels. As a comprehensive study, this analysis attempts to account for all of the GHG emissions associated with each feedstock pathway through the entire life cycle. Emissions from all stages including feedstock production, land use change, pyrolysis, stabilizing the pyrolysis oil for transport and storage, and upgrading the stabilized pyrolysis oil to a hydrocarbon fuel are included. In addition to GHG emissions, the energy requirements and water use have been evaluated over the entire life cycle. The goal of this research is to help understand the relative advantages and disadvantages of the feedstocks and the resultant hydrocarbon biofuels based on three environmental indicators; GHG emissions, energy demand, and water utilization. Results indicate that liquid hydrocarbon biofuels produced through this pyrolysis-based pathway can achieve greenhouse gas emission savings of greater than 50% compared to petroleum fuels, thus potentially qualifying these biofuels under the US EPA RFS2 program. GHG emissions from biofuels ranged from 10.7-74.3 g/MJ from biofuels derived from sugarcane bagasse and wild algae at the extremes of this range, respectively. The cumulative energy demand (CED) shows that energy in every biofuel process is primarily from renewable biomass and the remaining energy demand is mostly from fossil fuels. The CED for biofuel range from 1.25-3.25 MJ/MJ from biofuels derived from sugarcane bagasse to wild algae respectively, while the other feedstock-derived biofuels are around 2 MJ/MJ. Water utilization is primarily from cooling water use during the pyrolysis stage if irrigation is not used during the feedstock production stage. Water use ranges from 1.7 - 17.2 gallons of water per kg of biofuel from sugarcane bagasse to open pond algae, respectively.
Resumo:
Acer saccharum Marsh., is one of the most valuable trees in the northern hardwood forests. Severe dieback was recently reported by area foresters in the western Upper Great Lakes Region. Sugar Maple has had a history of dieback over the last 100 years throughout its range and different variables have been identified as being the predisposing and inciting factors in different regions at different times. Some of the most common factors attributed to previous maple dieback episodes were insect defoliation outbreaks, inadequate precipitation, poor soils, atmospheric deposition, fungal pathogens, poor management, or a combination of these. The current sugar maple dieback was evaluated to determine the etiology, severity, and change in dieback on both industry and public lands. A network of 120 sugar maple health evaluation plots was established in the Upper Peninsula, Michigan, northern Wisconsin, and eastern Minnesota and evaluated annually from 2009-2012. Mean sugar maple crown dieback between 2009-2012 was 12.4% (ranging from 0.8-75.5%) across the region. Overall, during the sampling period, mean dieback decreased by 5% but individual plots and trees continued to decline. Relationships were examined between sugar maple dieback and growth, habitat conditions, ownership, climate, soil, foliage nutrients, and the maple pathogen sapstreak. The only statistically significant factor was found to be a high level of forest floor impacts due to exotic earthworm activity. Sugar maple on soils with lower pH had less earthworm impacts, less dieback, and higher growth rates than those on soils more favorable to earthworms. Nutritional status of foliage and soil was correlated with dieback and growth suggesting perturbation of nutrient cycling may be predisposing or contributing to dieback. The previous winter's snowfall totals, length of stay on the ground, and number of days with freezing temperatures had a significant positive relationship to sugar maple growth rates. Sapstreak disease, Ceratocystis virescens, may be contributing to dieback in some stands but was not related to the amount of dieback in the region. The ultimate goal of this research is to help forest managers in the Great Lakes Region prevent, anticipate, reduce, and/or salvage stands with dieback and loss in the future. An improved understanding of the complex etiology associated with sugar maple dieback in the Upper Great Lakes Region is necessary to make appropriate silvicultural decisions. Forest Health education helps increase awareness and proactive forest management in the face of changing forest ecosystems. Lessons are included to assist educators in incorporating forest health into standard biological disciplines at the secondary school curricula.
Resumo:
BACKGROUND: The aim was to compare cause-specific mortality, self-rated health (SRH) and risk factors in the French and German part of Switzerland and to discuss to what extent variations between these regions reflect differences between France and Germany. METHODS: Data were used from the general population of German and French Switzerland with 2.8 million individuals aged 45-74 years, contributing 176 782 deaths between 1990 and 2000. Adjusted mortality risks were calculated from the Swiss National Cohort, a longitudinal census-based record linkage study. Results were contrasted with cross-sectional analyses of SRH and risk factors (Swiss Health Survey 1992/3) and with cross-sectional national and international mortality rates for 1980, 1990 and 2000. RESULTS: Despite similar all-cause mortality, there were substantial differences in cause-specific mortality between Swiss regions. Deaths from circulatory disease were more common in German Switzerland, while causes related to alcohol consumption were more prevalent in French Switzerland. Many but not all of the mortality differences between the two regions could be explained by variations in risk factors. Similar patterns were found between Germany and France. CONCLUSION: Characteristic mortality and behavioural differentials between the German- and the French-speaking parts of Switzerland could also be found between Germany and France. However, some of the international variations in mortality were not in line with the Swiss regional comparison nor with differences in risk factors. These could relate to peculiarities in assignment of cause of death. With its cultural diversity, Switzerland offers the opportunity to examine cultural determinants of mortality without bias due to different statistical systems or national health policies.
Resumo:
Hyperglycaemia is common in acute illness and more severe hyperglycaemia is associated with worse outcomes in critically ill patients in general and after acute myocardial infarction, stroke, and trauma. Normalization of blood glucose by intensive insulin therapy has been shown to reduce morbidity and mortality in one study in surgical intensive care patients; a subsequent study in medical intensive care patients resulted in reduced morbidity but not a reduction in mortality. Multicentre studies and current meta-analyses in the critically ill have not demonstrated improved outcomes when normalization of blood glucose was targeted; furthermore all studies to date have detected an increased risk of hypoglycaemia in patients subjected to intensive insulin therapy. At present, universal treatment guidelines or recommendations to target strict normoglycaemia must be considered premature. Further data will be available after the completion of the NICE-SUGAR study which has recruited 6103 patients; the NICE SUGAR study will add significant power to future meta-analyses and may help define the role of intensive insulin therapy in critically ill patients.
Resumo:
OBJECTIVE: Anaemia in rheumatoid arthritis (RA) is prototypical of the chronic disease type and is often neglected in clinical practice. We studied anaemia in relation to disease activity, medications and radiographic progression. METHODS: Data were collected between 1996 and 2007 over a mean follow-up of 2.2 years. Anaemia was defined according to WHO (♀ haemoglobin<12 g/dl, ♂: haemoglobin<13 g/dl), or alternative criteria. Anaemia prevalence was studied in relation to disease parameters and pharmacological therapy. Radiographic progression was analysed in 9731 radiograph sets from 2681 patients in crude longitudinal regression models and after adjusting for potential confounding factors, including the clinical disease activity score with the 28-joint count for tender and swollen joints and erythrocyte sedimentation rate (DAS28ESR) or the clinical disease activity index (cDAI), synthetic antirheumatic drugs and antitumour necrosis factor (TNF) therapy. RESULTS: Anaemia prevalence decreased from more than 24% in years before 2001 to 15% in 2007. Erosions progressed significantly faster in patients with anaemia (p<0.001). Adjusted models showed these effects independently of clinical disease activity and other indicators of disease severity. Radiographic damage progression rates were increasing with severity of anaemia, suggesting a 'dose-response effect'. The effect of anaemia on damage progression was maintained in subgroups of patients treated with TNF blockade or corticosteroids, and without non-selective nonsteroidal anti-inflammatory drugs (NSAIDs). CONCLUSIONS: Anaemia in RA appears to capture disease processes that remain unmeasured by established disease activity measures in patients with or without TNF blockade, and may help to identify patients with more rapid erosive disease.
Resumo:
Repetitive transcranial magnetic stimulation (rTMS) is a recent putative treatment for affective disorders. Several studies have demonstrated antidepressant effects of rTMS in younger patients; we aimed to assess its effect in older outpatients with treatment-resistant major depression. Twenty-four outpatients (mean age=62 years, S.D.=12) with major depression were randomized for sham or real stimulation and received 10 daily rTMS sessions (20 Hz, 2-s trains, 28-s intertrain intervals, 100% of motor threshold) in addition to the antidepressant medication. For sham stimulation, the coil was tilted 90 degrees. Depression severity was assessed using the Hamilton Depression Rating Scale, the Beck Depression Inventory, items from the NIMH self-rated symptom scale, and a visual analog depression scale. Mini-Mental Status Examination performance, memory, and executive and attentional functions were measured to control for cognitive side effects. Depression ratings revealed significant antidepressant effects within 2 weeks in both sham and real stimulation groups; however, there were no between-group differences. Treatment with rTMS was safe; adverse events were rare and not more prevalent in either group, and cognitive assessment did not show any deterioration. We were unable to demonstrate any additional antidepressant effects of real stimulation in elderly patients with treatment-resistant major depression. Therapeutic effects of rTMS in this clinically challenging patient group remain to be demonstrated.
Resumo:
Decision making in honeybees is based on in- formation which is acquired and processed in order to make choices between two or more al- ternatives. These choices lead to the expression of optimal behaviour strategies such as floral constancy. Optimal foraging strategies such as floral constancy improve a colony’s chances of survival, however to our knowledge, there has been no research on decision making based on optimal storage strategies. Here we show, using diagnostic radioentomology, that decision mak- ing in storer bees is influenced by nectar sugar concentrations and that, within 48 hours of col- lection, honeybees workers store carbohydrates in groups of cells with similar sugar concentra- tions in a nonrandom way. This behaviour, as evidenced by patchy spatial cell distributions, would help to hasten the ripening process by reducing the distance between cells of similar sugar concentrations. Thus, colonies which ex- hibit optimal storage strategies such as these would have an evolutionary advantage and im- prove colony survival expectations over less efficient colonies and it should be plausible to select colonies that exhibit these preferred traits.
Resumo:
While keto-amino cytosine is the dominant species in aqueous solution, spectroscopic studies in molecular beams and in noble gas matrices show that other cytosine tautomers prevail in apolar environments. Each of these offers two or three H-bonding sites (Watson–Crick, wobble, sugar-edge). The mass- and isomer-specific S1 ← S0 vibronic spectra of cytosine·2-pyridone (Cyt·2PY) and 1-methylcytosine·2PY are measured using UV laser resonant two-photon ionization (R2PI), UV/UV depletion, and IR depletion spectroscopy. The UV spectra of the Watson–Crick and sugar-edge isomers of Cyt·2PY are separated using UV/UV spectral hole-burning. Five different isomers of Cyt·2PY are observed in a supersonic beam. We show that the Watson–Crick and sugar-edge dimers of keto-amino cytosine with 2PY are the most abundant in the beam, although keto-amino-cytosine is only the third most abundant tautomer in the gas phase. We identify the different isomers by combining three different diagnostic tools: (1) methylation of the cytosine N1–H group prevents formation of both the sugar-edge and wobble isomers and gives the Watson–Crick isomer exclusively. (2) The calculated ground state binding and dissociation energies, relative gas-phase abundances, excitation and the ionization energies are in agreement with the assignment of the dominant Cyt·2PY isomers to the Watson–Crick and sugar-edge complexes of keto-amino cytosine. (3) The comparison of calculated ground state vibrational frequencies to the experimental IR spectra in the carbonyl stretch and NH/OH/CH stretch ranges strengthen this identification.
Resumo:
The oxygen isotopic composition of precipitation (δ18Oprec) is well known to be a valuable (paleo-)climate proxy. Paleosols and sediments and hemicelluloses therein have the potential to serve as archives recording the isotopic composition of paleoprecipitation. In a companion paper (Zech et al., 2014) we investigated δ18Ohemicellulose values of plants grown under different climatic conditions in a climate chamber experiment. Here we present results of compound-specific δ18O analyses of arabinose, fucose and xylose extracted from modern topsoils (n = 56) along a large humid-arid climate transect in Argentina in order to answer the question whether hemicellulose biomarkers in soils reflect δ18Oprec. The results from the field replications indicate that the homogeneity of topsoils with regard to δ18Ohemicellulose is very high for most of the 20 sampling sites. Standard deviations for the field replications are 1.5‰, 2.2‰ and 1.7‰, for arabinose, fucose and xylose, respectively. Furthermore, all three hemicellulose biomarkers reveal systematic and similar trends along the climate gradient. However, the δ18Ohemicellulose values (mean of the three sugars) do not correlate positively with δ18Oprec (r = −0.54, p < 0.014, n = 20). By using a Péclet-modified Craig-Gordon (PMCG) model it can be shown that the δ18Ohemicellulose values correlate highly significantly with modeled δ18Oleaf water values (r = 0.81, p < 0.001, n = 20). This finding suggests that hemicellulose biomarkers in (paleo-)soils do not simply reflect δ18Oprec but rather δ18Oprec altered by evaporative 18O enrichment of leaf water due to evapotranspiration. According to the modeling results, evaporative 18O enrichment of leaf water is relatively low (∼10‰) in the humid northern part of the Argentinian transect and much higher (up to 19‰) in the arid middle and southern part of the transect. Model sensitivity tests corroborate that changes in relative air humidity exert a dominant control on evaporative 18O enrichment of leaf water and thus δ18Ohemicellulose, whereas the effect of temperature changes is of minor importance. While oxygen exchange and degradation effects seem to be negligible, further factors needing consideration when interpreting δ18Ohemicellulose values obtained from (paleo-)soils are evaporative 18O enrichment of soil water, seasonality effects, wind effects and in case of abundant stem/root-derived organic matter input a partial loss of the evaporative 18O enrichment of leaf water. Overall, our results prove that compound-specific δ18O analyses of hemicellulose biomarkers in soils and sediments are a promising tool for paleoclimate research. However, disentangling the two major factors influencing δ18Ohemicellulose, namely δ18Oprec and relative air humidity controlled evaporative 18O enrichment of leaf water, is challenging based on δ18O analyses alone.