937 resultados para ANIMAL MODEL
Resumo:
Wilson disease is an autosomal recessive copper transport disorder resulting from defective biliary excretion of copper and subsequent hepatic copper accumulation and liver failure if not treated. The disease is caused by mutations in the ATP7B (WND) gene, which is expressed predominantly in the liver and encodes a copper-transporting P-type ATPase that is structurally and functionally similar to the Menkes protein (MNK), which is defective in the X-linked copper transport disorder Menkes disease. The toxic milk (tx) mouse has a clinical phenotype similar to Wilson disease patients and, recently, the tx mutation within the murine WND homologue (Wnd) of this mouse was identified, establishing it as an animal model for Wilson disease. In this study, cDNA constructs encoding the wild-type (Wnd-wt) and mutant (Wnd-tx) Wilson proteins (Wnd) were generated and expressed in Chinese hamster ovary (CHO) cells. The fx mutation disrupted the copper-induced relocalization of Wnd in CHO cells and abrogated Wnd-mediated copper resistance of transfected CHO cells. In addition, co-localization experiments demonstrated that while Wnd and MNK are located in the trans-Golgi network in basal copper conditions, with elevated copper, these proteins are sorted to different destinations within the same cell, Ultrastructural studies showed that with elevated copper levels, Wnd accumulated in large multivesicular structures resembling late endosomes that may represent a novel compartment for copper transport. The data presented provide further support for a relationship between copper transport activity and the copper-induced relocalization response of mammalian copper ATPases, and an explanation at a molecular level for the observed phenotype of fx mice.
Resumo:
It is now 35 years since Brandtzaeg and Kraus (1965) published their seminal work entitled Autoimmunity and periodontal disease. Initially, this work led to the concept that destructive periodontitis was a localized hypersensitivity reaction involving immune complex formation within the tissues. In 1970, Ivanyi and Lehner highlighted a possible role for cell-mediated immunity, which stimulated a flurry of activity centered on the role of lymphokines such as osteoclast-activating factor (OAF), macrophage-activating factor (MAF), macrophage migration inhibition factor (MIF), and myriad others. In the late 1970s and early 1980s, attention focused on the role of polymorphonuclear neutrophils, and it was thought that periodontal destruction occurred as a series of acute exacerbations. As well, at this stage doubt was being cast on the concept that there was a neutrophil chemotactic defect in periodontitis patients. Once it was realized that neutrophils were primarily protective and that severe periodontal destruction occurred in the absence of these cells, attention swung back to the role of lymphocytes and in particular the regulatory role of T-cells. By this time in the early 1990s, while the roles of interleukin (IL)-1, prostaglandin (PG) E-2, and metalloproteinases as the destructive mediators in periodontal disease were largely understood, the control and regulation of these cytokines remained controversial. With the widespread acceptance of the Th1/Th2 paradigm, the regulatory role of T-cells became the main focus of attention, Two apparently conflicting theories have emerged. One is based on direct observations of human lesions, while the other is based on animal model experiments and the inability to demonstrate IL-4 mRNA in gingival extracts. As part of the Controversy series, this review is intended to stimulate debate and hence may appear in some places provocative. In this context, this review will present the case that destructive periodontitis is due to the nature of the lymphocytic infiltrate and is not due to periodic acute exacerbations, nor is it due to the so-called virulence factors of putative periodontal pathogens.
Resumo:
The use of electrotransfer for DNA delivery to prokaryotic cells, and eukaryotic cells in vitro, has been well known and widely used for many years. However, it is only recently that electric fields have been used to enhance DNA transfer to animal cells in vivo, and this is known as DNA electrotransfer or in vivo DNA electroporation. Some of the advantages of this method of somatic cell gene transfer are that it is a simple method that can be used to transfer almost any DNA construct to animal cells and tissues in vivo; multiple constructs can be co-transfected; it is equally applicable to dividing and nondividing cells; the DNA of interest does not need to be subeloned into a specific viral transfer vector and there is no need for the production of high titre viral stocks; and, as no viral genes are expressed there is less chance of an adverse immunologic reaction to vector sequences. The ease with which efficient in vivo gene transfer can be achieved with in vivo DNA electrotransfer is now allowing genetic analysis to be applied to a number of classic animal model systems where transgenic and embryonic stem cell techniques are not well developed, but for which a wealth of detailed descriptive embryological information is available, or surgical manipulation is much more feasible. As well as exciting applications in developmental biology, in vivo DNA electrotransfer is also being used to transfer genes to skeletal muscle and drive expression of therapeutically active proteins, and to examine exogenous gene and protein function in normal adult cells situated within the complex environment of a tissue and organ system in vivo. Thus, in effect providing the in vivo equivalent of the in vitro transient transfection assay. As the widespread use of in vivo electroporation has really only just begun, it is likely that the future will hold many more applications for this technology in basic research, biotechnology and clinical research areas.
Resumo:
Objective To report on the failure of thalidomide to inhibit tumour growth in an animal model of human renal cell carcinoma (RCC). Materials and methods An orthotopic xenograft model of human RCC was used in which tumour cells were implanted in the left kidney of male 'severe combined immunodeficient' mice. Thalidomide was administered by intraperitoneal injection and after 34 days the mice were killed. The extent of tumour growth was compared in treated and untreated mice. Total RNA was extracted from both tumour-affected and contralateral kidneys, and analysed by reverse transcription-polymerase chain reaction for various genes implicated in angiogenesis and metastasis in RCC. Results Thalidomide failed to inhibit the growth of xenograft tumours. The expression of angiogenic genes, e.g. vascular endothelial growth factor and fibroblast growth factor type 2 (FGF-2) within normal and tumour-affected kidney tissue was not reduced by thalidomide. Intratumoral transcription Of beta(3)-integrin, a critical component of angiogenesis, was significantly increased in response to thalidomide treatment (P
Resumo:
Background-In vivo methods to evaluate the size and composition of atherosclerotic lesions in animal models of atherosclerosis would assist in the testing of antiatherosclerotic drugs. We have developed an MRI method of detecting atherosclerotic plaque in the major vessels at the base of the heart in low-density lipoprotein (LDL) receptor-knockout (LDLR-/-) mice on a high-fat diet. Methods and Results-Three-dimensional fast spin-echo magnetic resonance images were acquired at 7 T by use of cardiac and respiratory triggering, with approximate to140-mum isotropic resolution, over 30 minutes. Comparison of normal and fat-suppressed images from female LDLR-/- mice I week before and 8 and 12 weeks after the transfer to a high-fat diet allowed visualization and quantification of plaque development in the innominate artery in vivo. Plaque mean cross-sectional area was significantly greater at week 12 in the LDLR-/- mice (0.14+/-0.086 mm(2) [mean+/-SD]) than in wild-type control mice on a normal diet (0.017+/-0.031 mm(2), p
Resumo:
Infection with group A streptococci (GAS) can lead to rheumatic fever (RF) and rheumatic heart disease (RHD) which are a major health concern particularly in indigenous populations worldwide, and especially in Australian Aboriginals. A primary route of GAS infection is via the upper respiratory tract, and therefore, a major goal of research is the development of a mucosal-based GAS vaccine, The majority of the research to date has focused on the GAS M protein since immunity to GAS is mediated by M protein type-specific opsonic antibodies. There are two major impediments to the development of a vaccine-the variability in M proteins and the potential for the induction of an autoimmune response. To develop a safe and broad-based vaccine, we have therefore focused on the GAS M protein conserved C-region, and have identified peptides, J8 and the closely related J8 peptide (J14), which may be important in protective immunity to GAS infection. Using a mucosal animal model system, our data have shown a high degree of throat GAS colonisation in B10.BR mice 24 h following intranasal immunisation with the mucosal adjuvant, cholera toxin B subunit (CTB), and/or diptheria toxoid (dT) carrier, or PBS alone, and challenge with the M1 GAS strain. However, GAS colonisation of the throat was significantly reduced following intranasal immunisation of mice with the vaccine candidate J8 conjugated to dT or J14-dT when administered with CTB. Moreover, J8-dT/CTB and J14-dT/CTB-immunised mice had a significantly higher survival when compared to CTB and PBS-immunised control mice. These data indicate that immunity to GAS infection can be evoked by intranasal immunisation with a GAS M protein C-region peptide vaccine that contains a protective B cell epitope and lacks a T cell autoepitope. (C) 2002 Published by Elsevier Science Ltd.
Resumo:
Experimental antoimmune encephalomyelitis (EAE) is an organ-specific autoimmune disease characterised by inflammation and demyelination of the central nervous system and is the best available animal model of multiple sclerosis (MS). Since previous studies have shown that EAE is less severe or is delayed in onset during pregnancy and that administration of the pregnancy hormone early pregnancy factor (EPF) down-regulates EAE, experiments in the present study were designed to explore further the role of EPF in EAE. By using the rosette inhibition test, the standard bioassay for EPF and, by semi-quantitative RT-PCR techniques, we have now shown that inflammatory cells from the spinal cord of rats with EAE can produce and secrete EPF, with production being greatest during recovery from disease. Administration of EPF to rats with EAE resulted in a significant increase in the expression of IL-4 and IL-10 mRNA and a significant decrease in IFN-gamma mRNA expression in spinal cord inflammatory cells. Encephalitogenic MBP-specific T cell lines were prepared from popliteal lymph nodes of rats with EAE. Proliferation assays using these cells demonstrated the ability of exogenous EPF to down-regulate the responses of T lymphocytes to MBP. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pesticide exposure during brain development could represent an important risk factor for the onset of neurodegenerative diseases. Previous studies investigated the effect of permethrin (PERM) administered at 34 mg/kg, a dose close to the no observable adverse effect level (NOAEL) from post natal day (PND) 6 to PND 21 in rats. Despite the PERM dose did not elicited overt signs of toxicity (i.e. normal body weight gain curve), it was able to induce striatal neurodegeneration (dopamine and Nurr1 reduction, and lipid peroxidation increase). The present study was designed to characterize the cognitive deficits in the current animal model. When during late adulthood PERM treated rats were tested for spatial working memory performances in a T-maze-rewarded alternation task they took longer to choose for the correct arm in comparison to age matched controls. No differences between groups were found in anxiety-like state, locomotor activity, feeding behavior and spatial orientation task. Our findings showing a selective effect of PERM treatment on the T-maze task point to an involvement of frontal cortico-striatal circuitry rather than to a role for the hippocampus. The predominant disturbances concern the dopamine (DA) depletion in the striatum and, the serotonin (5-HT) and noradrenaline (NE) unbalance together with a hypometabolic state in the medial prefrontal cortex area. In the hippocampus, an increase of NE and a decrease of DA were observed in PERM treated rats as compared to controls. The concentration of the most representative marker for pyrethroid exposure (3-phenoxybenzoic acid) measured in the urine of rodents 12 h after the last treatment was 41.50 µ/L and it was completely eliminated after 96 h.
Resumo:
The objective of the present study was to develop an efficient and reproducible protocol of immunization of guinea pigs with P. brasiliensis antigens as an animal model for future studies of protective immunity mechanisms. We tested three different antigens (particulate, soluble and combined) and six protocols in the presence and absence of Freund's complete adjuvant and with different numbers of immunizing doses and variable lenght of time between the last immunizing dose and challenge. The efficacy of the immunizing protocol was evaluated by measuring the humoral and cellular anti-P. brasiliensis immune response of the animals, using immuno-diffusion, skin test and macrophage migration inhibition test. It was observed that: 1. Three immunizing doses of the antigens induced a more marked response than two doses; 2. The highest immune response was obtained with the use of Freund's complete adjuvant; 3. Animals challenged a long time (week 6) after the last immunizing dose showed good anti-P. brasiliensis immune response; 4. The particulate antigen induced the lowest immune response. The soluble and the combined antigens were equally efficient in raising good humoral and cellular anti-P. brasiliensis immune response
Resumo:
Abstract The investigation of the web of relationships between the different elements of the immune system has proven instrumental to better understand this complex biological system. This is particularly true in the case of the interactions between B and T lymphocytes, both during cellular development and at the stage of cellular effectors functions. The understanding of the B–T cells interdependency and the possibility to manipulate this relationship may be directly applicable to situations where immunity is deficient, as is the case of cancer or immune suppression after radio and chemotherapy. The work presented here started with the development of a novel and accurate tool to directly assess the diversity of the cellular repertoire (Chapter III). Contractions of T cell receptor diversity have been related with a deficient immune status. This method uses gene chips platforms where nucleic acids coding for lymphocyte receptors are hybridized and is based on the fact that the frequency of hybridization of nucleic acids to the oligonucleotides on a gene chip varies in direct proportion to diversity. Subsequently, and using this new method and other techniques of cell quantification I examined, in an animal model, the role that polyclonal B cells and immunoglobulin exert upon T cell development in the thymus, specifically on the acquisition of a broader repertoire diversity by the T cell receptors (Chapter IV and V). The hypothesis tested was if the presence of more diverse peptides in the thymus, namely polyclonal immunoglobulin, would induce the generation of more diverse T cells precursors. The results obtained demonstrated that the diversity of the T cell compartment is increased by the presence of polyclonal immunoglobulin. Polyclonal immunoglobulin, and particularly the Fab fragments of the molecule, represent the most diverse self-molecules in the body and its peptides are presented by antigen presenting cells to precursor T cells in the thymus during its development. This probably contributes significantly to the generation of receptor diversity. Furthermore, we also demonstrated that a more diverse repertoire of T lymphocytes is associated with a more effective and robust T cell immune function in vivo, as mice with a more diverse T cell receptors reject minor histocompatiblility discordant skin grafts faster than mice with a shrunken T cell receptor repertoire (Chapter V). We believe that a broader T cell receptor diversity allows a more efficient recognition and rejection of a higher range of external and internal aggressions. In this work it is demonstrated that a reduction of TCR diversity by thymectomy in wild type mice significantly increased survival of H-Y incompatible skin grafts, indicating decrease on T cell function. In addiction reconstitution of T-cell diversity in mice with a decreased T cell repertoire diversity with immunoglobulin Fab fragments, lead to a increase on TCR diversity and to a significantly decreased survival of the skin grafts (Chapter V). These results strongly suggest that increases on T cell repertoire diversity contribute to improvement of T cell function. Our results may have important implications on therapy and immune reconstitution in the context of AIDS, cancer, autoimmunity and post myeloablative treatments. Based on the previous results, we tested the clinical hypothesis that patients with haematological malignancies subjected to stem cell transplantation who recovered a robust immune system would have a better survival compared to patients who did not recover such a robust immune system. This study was undertaken by the examination of the progression and overall survival of 42 patients with mantle cell non-Hodgkin lymphoma receiving autologous hematopoietic stem cell transplantation (Chapter VI). The results obtained show that patients who recovered higher numbers of lymphocytes soon after autologous transplantation had a statistically significantly longer progression free and overall survivals. These results demonstrate the positive impact that a more robust immune system reconstitution after stem cell transplantation may have upon the survival of patients with haematological malignancies. In a similar clinical research framework, this dissertation also includes the study of the impact of recovering normal serum levels of polyclonal immunoglobulin on the survival of patients with another B cell haematological malignancy, multiple myeloma, after autologous stem cell transplantation (Chapter VII). The relapse free survival of the 110 patients with multiple myeloma analysed was associated with their ability to recover normal serum levels of the polyclonal compartment of immunoglobulin. These results suggest again the important effect of polyclonal immunoglobulin for the (re)generation of the immune competence. We also studied the impact of a robust immunity for the response to treatment with the antibody anti CD20, rituximab, in patients with non- Hodgkin’s lymphoma (NHL) (Chapter VIII). Patients with higher absolute counts of CD4+ T lymphocytes respond better (in terms of longer progression free survival) to rituximab compared to patients with lower number of CD4+ T lymphocytes. These observations highlight again the fact that a competent immune system is required for the clinical benefit of rituximab therapy in NHL patients. In conclusion, the work presented in this dissertation demonstrates, for the first time, that diverse B cells and polyclonal immunoglobulin promote T cell diversification in the thymus and improve T lymphocyte function. Also, it shows that in the setting of immune reconstitution, as after autologous stem cell transplantation for mantle cell lymphoma and in the setting of immune therapy for NHL, the absolute lymphocyte counts are an independent factor predicting progression free and overall survival. These results can have an important application in the clinical practice since the majority of the current treatments for cancer are immunosuppressive and implicate a subsequent immune recovery. Also, the effects of a number of antineoplastic treatments, including biological agents, depend on the immune system activity. In this way, studies similar to the ones presented here, where methods to improve the immune reconstitution are examined, may prove to be instrumental for a better understanding of the immune system and to guide more efficient treatment options and the design of future clinical trials. Resumo O estudo da rede de inter-relações entre os diversos elementos do sistema immune tem-se mostrado um instrumento essencial para uma melhor compreensão deste complexo sistema biológico. Tal é particularmente verdade no caso das interacções entre os linfócitos B e T, quer durante o desenvolvimento celular, quer ao nível das funções celulares efectoras. A compreensão da interdependência entre linfócitos B e T e a possibilidade de manipular esta relação pode ser directamente aplicável a situações em que a imunidade está deficiente, como é o caso das doenças neoplásicas ou da imunossupressão após radio ou quimioterapia. O trabalho apresentado nesta dissertação iniciou-se com o desenvolvimento de um novo método laboratorial para medir directamente a diversidade do reportório celular (Capítulo III). Reduções da diversidade do reportório dos receptores de células T têm sido relacionadas com um estado de imunodeficiência. O método desenvolvido utiliza “gene chips”, aos quais hibridizam os ácidos nucleicos codificantes das cadeias proteicas dos receptores linfocitários. A diversidade é calculada com base na frequência de hibridização do ácido nucleico da amostra aos oligonucleótidos presentes no “gene chip”. De seguida, e utilizando este novo método e outras técnicas de quantificação celular examinei, num modelo animal, o papel que as células policlonais B e a imunoglobulina exercem sobre o desenvolvimento linfocitário T no timo, especificamente na aquisição de um reportório diverso de receptores T (Capítulos IV e V). Testei, então, a hipótese de que a presença no timo de péptidos mais diversos, como a imunoglobulna policlonal, induzisse a génese de precursores T mais diversos. Demonstrámos que a diversidade do compartimento T é aumentado pela presença de imunoglobulina policlonal. A imunoglobulina policlonal, e particularmente os fragmentos Fab desta molécula, representam as moléculas autólogas mais diversas presentes nos organismos vertebrados. Estes péptidos são apresentados por células apresentadoras de antigénio às células precursoras T no timo, durante o desenvolvimento celular T. Tal, provavelmente, contribui para a génese da diversidade dos receptores. Também demonstrámos que a presença de um reportório mais diverso de linfócitos T se associa a um incremento da função imunológica T in vivo. Uma diversidade de receptores T mais extensa parece permitir um reconhecimento e rejeição mais eficientes de um maior número de agressores internos e externos. Demonstrámos que ratinhos com receptores de células T (RCT) com maior diversidade rejeitam transplantes cutâneos discordantes para antigénios minor de histocompatibilidade mais rapidamente do que ratinhos com um menor reportório T (Capítulo V). Por outro lado, uma redução da diversidade do RCT, causada por timectomia de ratinhos de estirpes selvagens, mostrou aumentar significativamente a sobrevivência de transplantes cutâneos incompatíveis para o antigénio H-Y (antigénio minor de histocompatibilidade), indicando uma diminuição da função linfocitária T. Além disso, a reconstituição da diversidade dos linfócitos T em ratinhos com uma diversidade de reportório T diminuída, induzida pela administração de fragmentos Fab de imunoglobulina, conduz a um aumento da diversidade dos RCT e a uma diminuição significativa da sobrevivência dos enxertos cutâneos (Capítulo V). Estes resultados sugerem que o aumento do reportório de células T contribui para uma melhoria das funções celulares T e poderão ter implicações importantes na terapêutica e reconstitutição imunológica em contexto de SIDA, neoplasias, autoimunidade e após tratamentos mieloablativos. Baseado nos resultados anteriores, decidimos testar a hipótese clínica de que doentes com neoplasias hematológicas sujeitos a transplantação de precursores hematopoiéticos e com recuperação imunológica precoce após transplante teriam uma sobrevivência mais longa do que doentes que não recuperassem tão bem a sua imunidade. Analisámos a sobrevivência global e sobrevivência sem doença de 42 doentes com linfoma não Hodgkin de células do manto sujeitos a transplante autólogo de precursores hematopoiéticos (Capítulo VI). Os resultados obtidos mostraram que os doentes que recuperaram contagens mais elevadas de linfócitos imediatamente após o transplante autólogo, apresentaram uma sobrevivência global e sem progressão mais longa do que doentes que não recuperaram contagens linfocitárias tão precocemente. Estes resultados demonstram o efeito positivo de uma reconstitutição imunológica robusta após transplante de presursores hematopoiéticos, sobre a sobrevivência de doentes com neoplasias hematológicas. Do mesmo modo, estudámos o efeito que a recuperação de níveis séricos normais de imunoglobulina policlonal tem na sobrevivência de doentes com outras neoplasias hematológicas de linfócitos B, como o mieloma múltiplo,após transplante autólogo de precursos hematopoiéticos (Capítulo VII). A sobrevivência livre de doença dos 110 doentes com mieloma múltiplo analizados está associada com a sua capacidade de recuperar níveis séricos normais do compartmento policlonal de imunoglobulina. Estes resultados pioneiros indicam a importância da imunoglobulina policlonal para a génese de competência imunológica. Também estudámos o impacto de um sistema imunitário eficiente sobre a resposta ao tratamento com o anticorpo anti CD20, ituximab, em doentes com linfoma não Hodgkin (LNH) (Capítulo VIII). Os resultados mostram que doentes com valores mais elevados de linfócitos T CD4+ respondem melhor (em termos de maior sobrevida livre de doença) ao rituximab, do que doentes com valores mais baixos. Estas observações ilustram a necessidade de um sistema imunitário competente para o benefício clínico da terapêutica com rituximab em doentes com LNH. Em conclusão, o trabalho apresentado nesta dissertação demonstra que as células B e a imunoglobulina policlonal promovem a diversidade das células T no timo e melhoram a função linfocitária T periférica. Concomitantemente, também demonstrámos que, no contexto de reconstituição imune, por exemplo, após transplante autólogo de precursores hematopoiéticos em doentes com linfomas de células do manto, o número absoluto de linfócitos é uma factor independente da sobrevivência. Os resultados demonstram, também, a importância dos valores de linfocitos T na resposta ao tratamento com rituximab no caso de doentes com LNH. O mesmo princípio se prova pelo facto de que doentes com mieloma múltiplo sujeitos a transplante autólogo de precursores hematopoiéticos que recuperam valores normais séricos de imunoglobulinas policlonais, terem melhores taxas de resposta em comparação com doentes que não recuperam valores normais de imunoglobulinas policlonais. Estes resultados podem ter importantes aplicações na prática clínica dado que a maioria dos tratamentos de doenças neoplásicas implica imunossupressão e, subsequente, recuperação imunológica. Estes estudos podem ser um instrumento fundamental para uma melhor compreensão do sistema imune e guiar uma escolha mais eficiente de opções terapêuticas bem como contribuir para a concepção de futuros estudos clínicos.
Resumo:
RESUMO A Esclerose Múltipla (EM) é uma doença desmielinizante crónica do Sistema Nervoso Central (SNC), provocada, em grande parte, por um ataque imuno-mediado contra diversos elementos da bainha de mielina. Dentro dos alvos antigénicos desta resposta autoimune, vários componentes proteicos e lipídicos da mielina têm vindo a ser identificados ao longo dos anos, entre os quais se destacam a proteína básica de mielina(MBP), glicoproteína ligodendrocitária da mielina (MOG), proteína proteolipídica (PLP) e glicoproteína associada à mielina (MAG). Com o desenvolvimento do modelo animal de Encefalomielite Autoimune Experimental (EAE), diversas terapias antigénio-específicas foram desenhadas, baseadas na modificação benéfica da resposta autoimune contra a mielina, tais como a administração de mielina ou seus componentes, os copolímeros terapêuticos, os ligandos peptídeos alterados e, recentemente, a vacinação com ácido desoxirribonucleico (ADN) codificador de proteínas de mielina, integrado em plasmídeos e purificado para administração parentérica. Neste trabalho, apresentamos os resultados de um extenso conjunto de experiências, subordinadas a dois temas fundamentais: 1) avaliação do potencial terapêutico, e dos mecanismos de acção, da vacinação tolerizadora com ADN codificador de proteínas de mielina (MBP, MOG, PLP, MAG) na EAE, e da associação desta vacinação com a administração de ADN de citocinas Th2, ou de oligonucleótidos imunomoduladores; 2) identificação e caracterização da resposta imune contra um novo componente da mielina com potencial antigénico, a proteína inibidora do recrescimento axonal, Nogo-A. No que respeita à vacinação com ADN, os nossos resultados comprovam a eficácia desta terapêutica antigénio-específica na prevenção e tratamento da EAE. Os seus mecanismos de acção incluem, entre outros, a supressão anérgica da proliferação antigénioespecífica dos linfócitos T anti-mielina (no modo de prevenção da doença), o enviesamento Th2 da resposta imune (quando co-administrada com a vacina de ADN codificadora da citocina IL-4, funcionando como terapia génica local), e a redução da diversificação de epítopos da resposta humoral anti-mielina, avaliada através de myelin spotted arrays. A associação das vacinas de ADN com oligonucleótidos imunomoduladores GpG, desenvolvidos para contrariar as sequências CpG imunoestimuladoras presentes no vector de vacinação, levou à melhoria da sua eficácia terapêutica, devida, provavelmente, ao efeito estimulador preferencial dos oligonucleótidos GpG sobre linfócitos Th2 e sobre células reguladoras NK-T. Com base nestes resultados a vacinação com ADN foi desenvolvida para o tratamento da EM em humanos, com ensaios clínicos a decorrerem neste momento. Em relação à proteína Nogo-A, estudos de estrutura primária e de previsão de antigenicidade identificaram a região Nogo-66 como alvo antigénico potencial para a EAE. Nas estirpes de ratinho SJL/J e C57BL/6, fomos capazes de induzir sinais clínicos e histológicos de EAE após imunização com os epítopos encefalitogénicos Nogo1-22, Nogo23- 44 e Nogo45-66, utilizando protocolos de quebra de tolerância imune. Ao mesmo tempo, identificámos e caracterizámos uma resposta linfocitária T específica contra os antigénios contidos na região Nogo-66, e uma resposta linfocitária B com diversificação intra e intermolecular a vários determinantes presentes noutras proteínas da mielina. A transferência adoptiva de linhas celulares Th2 anti-Nogo45-66, levou à melhoria clínica e histológica da EAE em animais recipientes induzidos com outros antigénios de mielina, após migração destas células para o SNC. Estes dados comprovam a importância da Nogo-66 como antigénio na EAE, e a eficácia de terapias antigénio-específicas nela baseadas. No seu conjunto, os nossos resultados confirmam o potencial terapêutico das vacinas de ADN codificadoras de proteínas de mielina, bem como a importância dos encefalitogénios contidos na proteína Nogo-A para a fisiopatologia da EAE e da EM, com eventual relevância para o desenvolvimento de novas terapias antigénio-específicas. O aperfeiçoamento futuro destas terapias poderá levar, eventualmente, a uma capacidade de manipulação da resposta imune que permita o tratamento eficaz das doenças inflamatórias desmielinizantes, como a Esclerose Múltipla. ABSTRACT Multiple Sclerosis (MS) is a chronic demyelinating disease of the Central Nervous System (CNS), caused, mainly, by an immune-mediated attack against several elements of the myelin sheath. Among the antigenic targets for this autoimmune response, several proteic and lipidic myelin components have been identified throughout the years, of which myelin basic protein (MBP), myelin oligodendrocyte glycoprotein (MOG), proteolipidic protein (PLP), and myelin associated glycoprotein (MAG) are the best characterized. With the development of the animal model for MS, Experimental Autoimmune Encephalomyelitis (EAE), several antigen-specific therapies have been designed, based on beneficial modifications of the autoimmune response against myelin. These have included myelin and myelin component administration, therapeutic copolymers, altered peptide ligands and, more recently, vaccination with myelin-protein encoding deoxyribonucleic acid (DNA), integrated into plasmids and purified for parenteral administration. In this work we present the results of an extensive series of experiments, subordinate to two fundamental areas: 1) evaluating the therapeutic potential, and mechanisms of action, of tolerizing myelin protein (MBP, MOG, PLP, MAG) DNA vaccination in EAE, alone and in association with Th2 cytokine DNA administration, or immunomodulatory oligonucleotides; 2) identifying and characterizing the immuneresponse against a new myelin component with antigenic potential, the axonal regrowth inhibitor Nogo-A. Regarding DNA vaccination, our results prove the efficacy of this antigen-specific therapy for the prevention and treatment of EAE. Its mechanisms of action include, among others, anergic suppression of antigen-specific T-cell proliferation against myelin (in prevention mode), Th2 biasing of the immune response (when co-administered with the IL- 4 codifying DNA vaccine, acting as local gene therapy), and reduction of epitope spreading of the anti-myelin antibody response, assessed by myelin spotted arrays. The combination of myelin DNA vaccination with the administration of GpG immunomodulatory oligonucleotides, designed to counteract immunostimulatory CpG motifs present in the vaccination vector, led to an improvement in therapeutic efficacy, probably due to the preferential stimulatory effect of GpG oligonucleotides on Th2 lymphocytes and on regulatory NK-T cells. Based on these results, tolerizing DNA vaccination is being developed for human use, with ongoing clinical trials. As concerns the Nogo-A protein, based on studies of primary structure and prediction of antigenicity, we identified the Nogo-66 region (responsible for the most of the inhibitory capacity of this protein) as a potential antigenic target for EAE. In the SJL/Jand C57BL/6 mouse strains, we were able to induce clinical and histological signs of EAE,after immunization with the encefalitogenic epitopes Nogo1-22, Nogo23-44 and Nogo45-66,using a tolerance breakdown protocol. Concomitantly, we identified and characterized a specific T cell response against these antigens, together with a B cell response which showed extensive intra and intermolecular epitope spread to several determinants present in other myelin proteins. Adoptive transfer of nti-Nogo45-66 Th2 cell lines resulted in clinical and histological improvement of EAE in recipient animals induced with other myelin antigens, after intraparenchymal CNS migration of anti-Nogo cells. These data confirm the relevance of Nogo-66 as an antigen in EAE, as well as the efficacy of antigenspecific therapies based on the response against this protein.In conclusion, our results substantiate the therapeutic potential of myelin-encoding DNA vaccination, as well as the importance of encefalitogenic epitopes present in the Nogo-A protein for the pathophysiology of EAE and MS, with potential relevance for the creation of new antigen specific-therapies. The future development of these therapies may eventually lead to a degree of manipulation of the immune response that allows the effective treatment of autoimmune, inflammatory, demyelinating diseases, such as Multiple Sclerosis.
Resumo:
RESUMO: O objectivo deste trabalho foi avaliar se a exposição crónica neonatal à hiperóxia mo-derada induz alterações funcionais e estruturais persistentes nas vias aéreas. Desenvolveu-se um modelo animal, no rato, a partir do qual se retiraram implicações para a compreensão das repercussões crónicas da hiperóxia neonatal sobre as vias aéreas de displasia broncopulmonar (DBP), em duas fases distintas: imediatamente após a exposi-ção neonatal a 50%O2 (grupo 50%O2) e após três semanas de recuperação em ar ambiente (grupo 50%O2+Ar).Compararam-se os resultados da resposta do músculo liso de traqueia (MLT) à esti-mulação in vitro com metacolina e salbutamol e avaliaram-se as alterações quantitativas da área de MLT, bem como as alterações qualitativas da estrutura da traqueia. Demonstrou-se que a exposição a 50% de oxigénio não tinha repercussões imediatas sobre a resposta in vitro do MLT à estimulação colinérgica, mas que induzia um aumento do relaxamento em resposta ao salbutamol. A contractilidade do MLT em resposta à estimula-ção com metacolina no grupo 50%O2+Ar foi significativamente superior à do grupo de con-trolo da mesma idade e também superior à observada no grupo 50%O2, enquanto que a resposta ao salbutamol se voltou a aproximar dos valores de controlo após a recuperação em normóxia. Não se observaram diferenças estatisticamente significativas na área de MLT entre os grupos experimental e de controlo, o que se deve provavelmente ao número reduzido de amostras avaliadas e à variabilidade deste parâmetro no grupo de controlo; contudo, verifi-cou-se um aumento médio de 15% imediatamente após a exposição à hiperóxia que persis-tiu após o período de recuperação.As alterações qualitativas sobre a arquitectura da traqueia, avaliadas por microscopia óptica, revelaram no grupo 50%O2 aumentos da espessura da matriz extracelular e da den-sidade de mastócitos desgranulados na submucosa e adventícia vizinhas do MLT, sem outras alterações relativamente ao grupo de controlo com 15 dias. As alterações da matriz extrace-lular foram reversíveis após a recuperação em ar ambiente. A densidade de mastócitos per-maneceu superior à do grupo de controlo de 36 dias de idade, apresentando-se em maior contiguidade com o MLT relativamente ao grupo 50%O2. Em síntese, demonstrou-se que a hiperóxia neonatal crónica em níveis moderados in-duz alterações da resposta contráctil do MLT e da estrutura da traqueia que podem ter ex-pressão funcional após a exposição ter cessado. Assim, o contributo original do presente trabalho foi o desenvolvimento de um modelo animal que permite avaliar os mecanismos pelos quais a hiperóxia é capaz de induzir, isoladamente, alterações crónicas da contracti-lidade, do relaxamento do ML e da estrutura das vias aéreas que podem ser responsáveis pela HRB persistente em doentes sujeitos a oxigenioterapia neonatal.-------------ABSTRACT: The aim of this work was to evaluate whether chronic neonatal exposure to hyperoxia in-duces persistent structural and functional airway changes. An animal model was developed, using neonatal rats, in order to understand the chronic effects of neonatal hyperoxia on the airways, in bronchopulmonary dysplasia, in two distinct phases: immediately after neonatal exposure to 50%O2 (50%O2 group) and after three weeks of recovery at ambient air (50%O2+Ar group).The results from the tracheal smooth muscle (TSM) response to in vitro stimulation with metacholine and salbutamol were compared and quantitative changes in TSM area, as well as qualitative changes in tracheal structure were evaluated. It was demonstrated that while exposure to 50% oxygen had no immediate effects on in vitro TSM response to cholinergic stimulation, it induced an increase in relaxation as a result of salbutamol administration. TSM contractility as a result of methacholine administration in the 50%O2 + Ar group was significantly higher than that of the same-age control group, and also higher than the one observed in the 50%O2 group, whereas the response to salbutamol admini-stration was once again closer to the control values after recovery in normoxia. There were no statistically significant differences in the TSM area between the experi-mental and control groups, which is most likely due to the reduced number of samples evalu-ated and to the variability of this parameter in the control group. However, there was an aver-age increase of 15% immediately after exposure to hyperoxia, which persisted after the recov-ery period. Qualitative changes in tracheal architecture, evaluated by optic microscopy, revealed that the 50%O2 group suffered an increase in the thickness of the extracellular matrix and degranu-lated mast cell density in the submucosa and adventitia adjacent to the TSM, without further changes when compared with the control group at 15 days of age. The changes in extracellular matrix were reversible after recovery in ambient air. Mast cell density remained higher than that of the control group at 36 days of age, and more contiguous to TSM than the 50%O2 group. In conclusion, it has been demonstrated that moderate levels of chronic neonatal hyperoxia in-duce changes in TSM contractile response and tracheal structure, which may be functionally ex-pressed after discontinuation of exposure. Therefore, the original contribution of the present work was the development of an animal model which allows the evaluation of the mechanisms through which hyperoxia alone can induce chronic changes in contractility and relaxation of SM and also in airway structure that can be responsible for the persistent airway hyperrespon-siveness found in patients who were submited to neonatal oxygen therapy.
Resumo:
Patients with paracoccidioidomycosis often present pulmonary fibrosis and exhibit important respiratory limitations. Based on an already established animal model, the contribution of viable and non-viable P. brasiliensis propagules to the development of fibrosis was investigated. BALB/c male mice, 4-6 weeks old were inoculated intranasally either with 4x10(6 )viable conidia (Group I), or 6.5x10(6) fragmented yeast cells (Group II). Control animals received PBS. Six mice per period were sacrificed at 24, 48, 72h (initial) and 1, 2, 4, 8, 12 and 16 weeks post-challenge (late). Paraffin embedded lungs were sectioned and stained with H&E, trichromic (Masson), reticulin and Grocott´s. During the initial period PMNs influx was important in both groups and acute inflammation involving 34% to 45% of the lungs was noticed. Later on, mononuclear cells predominated. In group I, the inflammation progressed and granulomas were formed and by the 12th week they fussed and became loose. Thick collagen I fibers were observed in 66.6% and 83.3% of the animals at 8 and 12 weeks, respectively. Collagen III, thick fibers became apparent in some animals at 4weeks and by 12 weeks, 83% of them exhibited alterations in the organization and thickness of these elements. In group II mice, this pattern was different with stepwise decrease in the number of inflammatory foci and lack of granulomas. Although initially most animals in this group had minor alterations in thin collagen I fibers, they disappeared by the 4th week. Results indicate that tissue response to fragmented yeast cells was transitory while viable conidia evoked a progressive inflammatory reaction leading to granuloma formation and to excess production and/or disarrangement of collagens I and III; the latter led to fibrosis.
Resumo:
In Amazonian Brazil, the Cebus apella monkey (Primates: Cebidae) has been associated with the enzootic cycle of Leishmania (V.) shawi, a dermotropic parasite causing American cutaneous leishmaniasis (ACL). It has also been successfully used as animal model for studying cutaneous leishmaniasis. In this work, there has been investigated its susceptibility to experimental Leishmania (L.) infantum chagasi-infection, the etiologic agent of American visceral leishmaniasis (AVL). There were used ten C. apella specimens, eight adult and two young, four males and six females, all born and raised in captivity. Two experimental infection protocols were performed: i) six monkeys were inoculated, intra-dermal via (ID), into the base of the tail with 2 x 10(6) promastigotes forms from the stationary phase culture medium; ii) other four monkeys were inoculated with 3 x 10(7) amastigotes forms from the visceral infection of infected hamsters by two different via: a) two by intravenous via (IV) and, b) other two by intra-peritoneal via (IP). The parameters of infection evaluation included: a) clinical: physical exam of abdomen, weigh and body temperature; b) parasitological: needle aspiration of the bone-marrow for searching of amastigotes (Giemsa-stained smears) and promastigotes forms (culture medium); c) immunological: Indirect fluorescence antibody test (IFAT) and, Delayed-type hypersensitivity (DTH). In the six monkeys ID inoculated (promastigotes forms) all parameters of infection evaluation were negative during the 12 months period of follow-up. Among the four monkeys inoculated with amastigotes forms, two IV inoculated showed the parasite in the bone-marrow from the first toward to the sixth month p.i. and following that they cleared the infection, whereas the other two IP inoculated were totally negative. These four monkeys showed specific IgG-antibody response since the third month p.i. (IP: 1/80 and IV: 1/320 IgG) toward to the 12th month (IP: 1/160 and IV: 1/5120). The DTH-conversion occurred in only one IV inoculated monkey with a strong (30 mm) skin reaction. Considering these results, we do not encourage the use of C. apella monkey as animal model for studying the AVL.