909 resultados para ANANDAMIDE HYDROLYSIS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Delivery of endocytosed macromolecules to lysosomes occurs by means of direct fusion of late endosomes with lysosomes. This has been formally demonstrated in a cell-free content mixing assay using late endosomes and lysosomes from rat liver. There is evidence from electron microscopy Studies that the same process occurs in intact cells. The fusion process results in the formation of hybrid organelles from which lysosomes are reformed. The discovery of the hybrid organelle has opened up three areas of investigation: (i) the mechanism of direct fusion of late endosomes and lysosomes, (ii) the mechanism of re-formation of lysosomes from the hybrid organelle, and (iii) the function of the hybrid organelle. Fusion has analogies with homotypic vacuole fusion in yeast. It requires syntaxin 7 as part of the functional trans-SNARE [SNAP receptor, where SNAP is soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein] complex and the release of lumenal calcium to achieve membrane fusion. Reformation of lysosomes from the hybrid organelle occurs by a maturation process involving condensation of lumenal content and probably removal of some membrane proteins by vesicular traffic. Lysosomes may thus be regarded as a type of secretory granule, storing acid hydrolases in between fusion events with late endosomes. The hybrid organelle is predicted to function as a 'cell stomach', acting as a major site of hydrolysis of endocytosed macromolecules.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The IWA Anaerobic Digestion Modelling Task Group was established in 1997 at the 8th World Congress on,Anaerobic Digestion (Sendai, Japan) with the goal of developing a generalised anaerobic digestion model. The structured model includes multiple steps describing biochemical as well as physicochemical processes. The biochemical steps include disintegration from homogeneous particulates to carbohydrates, proteins and lipids; extracellular hydrolysis of these particulate substrates to sugars, amino acids, and long chain fatty acids (LCFA), respectively; acidogenesis from sugars and amino acids to volatile fatty acids (VFAs) and hydrogen; acetogenesis of LCFA and VFAs to acetate; and separate methanogenesis steps from acetate and hydrogen/CO2. The physico-chemical equations describe ion association and dissociation, and gas-liquid transfer. Implemented as a differential and algebraic equation (DAE) set, there are 26 dynamic state concentration variables, and 8 implicit algebraic variables per reactor vessel or element. Implemented as differential equations (DE) only, there are 32 dynamic concentration state variables.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A method based on isothermal calorimetry is described for the direct kinetic assay of pyruvate kinase. In agreement with earlier findings based on the standard coupled assay system for this enzyme in the presence of a fixed ADP concentration, the essentially rectangular hyperbolic dependence of initial velocity upon phosphoenolpyruvate concentration is rendered sigmoidal by the allosteric inhibitor phenylalanine. This effect of phenylalanine can be countered by including a high concentration of a space- filling osmolyte such as proline in the reaction mixtures. This investigation thus affords a dramatic example that illustrates the need to consider potential consequences of thermodynamic nonideality on the kinetics of enzyme reactions in crowded molecular environments such as the cell cytoplasm.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Enterohepatic recycling occurs by biliary excretion and intestinal reabsorption of a solute, sometimes with hepatic conjugation and intestinal deconjugation. Cycling is often associated with multiple peaks and a longer apparent half-life in a plasma concentration-time profile. Factors affecting biliary excretion include drug characteristics (chemical structure, polarity and molecular size), transport across sinusoidal plasma membrane and canniculae membranes, biotransformation and possible reabsorption from intrahepatic bile ductules. Intestinal reabsorption to complete the enterohepatic cycle may depend on hydrolysis of a drug conjugate by gut bacteria. Bioavailability is also affected by the extent of intestinal absorption, gut-wall P-glycoprotein efflux and gut-wall metabolism. Recently, there has been a considerable increase in our understanding of the role of transporters, of gene expression of intestinal and hepatic enzymes, and of hepatic zonation. Drugs, disease and genetics may result in induced or inhibited activity of transporters and metabolising enzymes. Reduced expression of one transporter, for example hepatic canalicular multidrug resistance-associated protein (MRP) 2, is often associated with enhanced expression of others, for example the usually quiescent basolateral efflux MRP3, to limit hepatic toxicity. In addition, physiologically relevant pharmacokinetic models, which describe enterohepatic recirculation in terms of its determinants (such as sporadic gall bladder emptying), have been developed. In general, enterohepatic recirculation may prolong the pharmacological effect of certain drugs and drug metabolites. Of particular importance is the potential amplifying effect of enterohepatic variability in defining differences in the bioavailability, apparent volume of distribution and clearance of a given compound. Genetic abnormalities, disease states, orally administered adsorbents and certain coadministered drugs all affect enterohepatic recycling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Within the skeletal muscle cell at the onset of muscular contraction, phosphocreatine (PCr) represents the most immediate reserve for the rephosphorylation of adenosine triphosphate (ATP). As a result, its concentration can be reduced to less than 30% of resting levels during intense exercise. As a fall in the level of PCr appears to adversely affect muscle contraction, and therefore power output in a subsequent bout, maximising the rate of PCr resynthesis during a brief recovery period will be of benefit to an athlete involved in activities which demand intermittent exercise. Although this resynthesis process simply involves the rephosphorylation of creatine by aerobically produced ATP (with the release of protons), it has both a fast and slow component, each proceeding at a rate that is controlled by different components of the creatine kinase equilibrium. The initial fast phase appears to proceed at a rate independent of muscle pH. Instead, its rate appears to be controlled by adenosine diphosphate (ADP) levels; either directly through its free cytosolic concentration, or indirectly, through its effect on the free energy of ATP hydrolysis. Once this fast phase of recovery is complete, there is a secondary slower phase that appears almost certainly rate-dependant on the return of the muscle cell to homeostatic intracellular pH. Given the importance of oxidative phosphorylation in this resynthesis process, those individuals with an elevated aerobic power should be able to resynthesise PCr at a more rapid rate than their sedentary counterparts. However, results from studies that have used phosphorus nuclear magnetic resonance (P-31-NMR) spectroscopy, have been somewhat inconsistent with respect to the relationship between aerobic power and PCr recovery following intense exercise. Because of the methodological constraints that appear to have limited a number of these studies, further research in this area is warranted.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An experimental study has been carried out to characterise the performance of polymer stabilisers, partially hydrolysed polyvinyl acetate (PVAc), used in suspension polymerisation processes. The stabilisers are ranked by their ability to stabilise the dispersion characterised by the median coalescence time of a single drop with its homophase at a planar liquid/liquid interface. Results show that the stability of the dispersion relates closely to the molecular properties of the PVAcs. Other conditions being equal, PVAcs with higher molecular weights or lower degrees of hydrolysis can better stabilise a liquid-liquid dispersion. The stability of the dispersion also depends strongly on where the PVAc resides. The presence of a PVAc in the dispersed phase significantly reduces stability. Consistent with results reported in the literature, considerable scatter has been observed on the coalescence times of identical drops under the same conditions. An explanation for the scatter is also proposed in the paper, based on the classical Reynolds model for film thinning. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High quality MSS membranes were synthesised by a single-step and two-step catalysed hydrolyses employing tetraethylorthosilicate (TEOS), absolute ethanol (EtOH), I M nitric acid (HNO3) and distilled water (H2O). The Si-29 NMR results showed that the two-step xerogels consistently had more contribution of silanol groups (Q(3) and Q(2)) than the single-step xerogel. According to the fractal theory, high contribution of Q(2) and Q(3) species are responsible for the formation of weakly branched systems leading to low pore volume of microporous dimension. The transport of diffusing gases in these membranes is shown to be activated as the permeance increased with temperature. Albeit the permeance of He for both single-step and two-step membranes are very similar, the two-step membranes permselectivity (ideal separation factor) for He/CO2 (69-319) and He/CH4 (585-958) are one to two orders of magnitude higher than the single-step membranes results of 2-7 and 69, respectively. The two-step membranes have high activation energy for He and H-2 permeance, in excess of 16 kJ mol(-1). The mobility energy for He permeance is three to six-fold higher for the two-step than the single-step membranes. As the mobility energy is higher for small pores than large pores and coupled with the permselectivity results, the two-step catalysed hydrolysis sol-gel process resulted in the formation of pore sizes in the region of 3 Angstrom while the single-step process tended to produce slightly larger pores. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A digalactosyl ononitol was isolated from seeds of adzuki bean (Vigna angularis [Willd.] Ohwi et Ohasi). Analysis of hydrolysis products and NMR spectroscopy established its structure as O-alpha-D-galactopyranosyl-(1-->6)-O-alpha-D-galactopyranosyl-(1-->3)-O-methyl- D-myo-inositol. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Certain glycosidase inhibitors possess potent antiviral, antitumour and antidiabetic properties. Glyconic acid lactones, the earliest glycosidase inhibitors identified, have planar anomeric carbons that mimic the transition state of glycoside hydrolysis. Other classes include lactams, glycals, epoxides, halides and sulfonium ions, the latter based on the natural product salacinol from an antidiabetic herb.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vps4p (End13p) is an AAA-family ATPase that functions in membrane transport through endosomes, sorting of soluble vacuolar proteins to the vacuole, and multivesicular body (MVB) sorting of membrane proteins to the vacuole lumen. In a yeast two-hybrid screen with Vps4p as bait we isolated VPS20 (YMR077c) and the novel open reading frame YLA181c, for which the name VTA1 has recently been assigned (Saccharomyces Genome Database). Vps4p directly binds Vps20p and Vta1p in vitro and binding is not dependent on ATP-conversely, Vps4p binding to Vps20p is partially sensitive to ATP hydrolysis. Both ATP binding [Vps4p-(K179A)] and ATP hydrolysis [Vps4p-(E233Q)] mutant proteins exhibit enhanced binding to Vps20p and Vta1p in vitro. The Vps4p-Vps20p interaction involves the coiled-coil domain of each protein, whereas the Vps4p-Vta1p interaction involves the (non-coiled-coil) C-terminus of each protein. Deletion of either VPS20 (vps20Delta) or VTA1 (vta1Delta) leads to similar class E Vps(-) phenotypes resembling those of vps4Delta, including carboxypeptidase Y (CPY) secretion, a block in ubiquitin-dependent MVB sorting, and a delay in both post-internalisation endocytic transport and biosynthetic transport to the vacuole. The vacuole resident membrane protein Sna3p (whose MVB sorting is ubiquitin-independent) does not appear to exit the class E compartment or reach the vacuole in cells lacking Vps20p, Vta1p or Vps4p, in contrast to other proteins whose delivery to the vacuole is only delayed. We propose that Vps20p and Vta1p regulate Vps4p function in vivo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Raw milk was stored for 0, 2 and 4 days and processed in a UHT pilot plant by either direct or indirect heating. The unstored raw milk was also pasteurised. The thermally induced changes resulting from these treatments were investigated by examining a number of indices of heat damage. Lactulose, furosine, total and free hydroxymethylfurfural (HMF) and acid-soluble beta-lactoglobulin were analysed by high performance liquid chromatography (HPLC) while soluble tryptophan was examined by fluorescence spectroscopy. The directly heated UHT milk showed less heat damage than the indirectly heated milk, while the pasteurised milk displayed the least heat damage. During storage of the UHT milk for 12 weeks at similar to20degreesC, the levels of lactulose remained constant, while the furosine concentration increased. Both the total HMF and undenatured beta-lactoglobulin contents showed a general decrease during storage; however free HMF values initially rose but then decreased after four weeks' storage. As the age of the milk at the time of UHT processing increased, the levels of some of the indicators decreased. It is concluded that lactulose is the most reliable index of heat treatment, as it is virtually unaffected by refrigerated storage of the milk before or ambient storage after UHT processing. Reliance on other indicators may give misleading information on the heat load that UHT milk has received during processing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aluminium (At) tolerance in plants may be conferred by reduced binding of Al in the cell wall through low root cation exchange capacity (CEC) or by organic acid exudation. Root CEC is related to the degree of esterification (DE) of pectin in the cell wall, and pectin hydrolysis plays a role in cell expansion. Therefore, it was hypothesised that Al-tolerant plants with a low root CEC maintain pectin hydrolysis in the presence of Al, allowing cell expansion to continue. Irrespective of the DE, binding of Al to pectin reduced the enzymatic hydrolysis of Al-pectin gels by polygalacturonase (E.C. 3.2.1.15). Pectin gels with calcium (Ca) were slightly hydrolysed by polygalacturonase. It was concluded, therefore, that Al tolerance conferred by low root CEC is not mediated by the ability to maintain pectin hydrolysis. Citrate and malate, but not acetate, effectively dissolved Al-pectate gel and led to hydrolysis of the dissolved pectin by polygalacturonase. The organic acids did not dissolve Ca-pectate, nor did they increase pectin hydrolysis by polygalacturonase. It was concluded that exudation of some organic acids can remove Al bound to pectin and this could alleviate toxicity, constituting a tolerance mechanism. (C) 2003 Editions scientitiques et medicales Elsevier SAS. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The interaction of a variety of substrates with Pseudomonas aeruginosa native amidase (E.C. 3.5.1.4), overproduced in an Escherichia coli strain, was investigated using difference FTIR spectroscopy. The amides used as substrates showed an increase in hydrogen bonding upon association in multimers, which was not seen with esters. Evidence for an overall reduction or weakening of hydrogen bonding while amide and ester substrates are interacting with the enzyme is presented. The results describe a spectroscopic approach for analysis of substrate-amidase interaction and in situ monitoring of the hydrolysis and transferase reaction when amides or esters are used as substrates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A biosensor for urea has been developed based on the observation that urea is a powerful active-site inhibitor of amidase, which catalyzes the hydrolysis of amides such as acetamide to produce ammonia and the corresponding organic acid. Cell-free extract from Pseudomonas aeruginosa was the source of amidase (acylamide hydrolase, EC 3.5.1.4) which was immobilized on a polyethersulfone membrane in the presence of glutaraldehyde; anion-selective electrode for ammonium ions was used for biosensor development. Analysis of variance was used for optimization of the biosensorresponse and showed that 30 mu L of cell-free extract containing 7.47 mg protein mL(-1), 2 mu L of glutaraldehyde (5%, v/v) and 10 mu L of gelatin (15%, w/v) exhibited the highest response. Optimization of other parameters showed that pH 7.2 and 30 min incubation time were optimum for incubation ofmembranes in urea. The biosensor exhibited a linear response in the range of 4.0-10.0 mu M urea, a detection limit of 2.0 mu M for urea, a response timeof 20 s, a sensitivity of 58.245 % per mu M urea and a storage stability of over 4 months. It was successfully used for quantification of urea in samples such as wine and milk; recovery experiments were carried out which revealed an average substrate recovery of 94.9%. The urea analogs hydroxyurea, methylurea and thiourea inhibited amidase activity by about 90%, 10% and 0%, respectively, compared with urea inhibition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The conventional methods used to evaluate chitin content in fungi, such as biochemical assessment of glucosamine release after acid hydrolysis or epifluorescence microscopy, are low throughput, laborious, time-consuming, and cannot evaluate a large number of cells. We developed a flow cytometric assay, efficient, and fast, based on Calcofluor White staining to measure chitin content in yeast cells. A staining index was defined, its value was directly related to chitin amount and taking into consideration the different levels of autofluorecence. Twenty-two Candida spp. and four Cryptococcus neoformans clinical isolates with distinct susceptibility profiles to caspofungin were evaluated. Candida albicans clinical isolate SC5314, and isogenic strains with deletions in chitin synthase 3 (chs3Δ/chs3Δ) and genes encoding predicted Glycosyl Phosphatidyl Inositol (GPI)-anchored proteins (pga31Δ/Δ and pga62Δ/Δ), were used as controls. As expected, the wild-type strain displayed a significant higher chitin content (P < 0.001) than chs3Δ/chs3Δ and pga31Δ/Δ especially in the presence of caspofungin. Ca. parapsilosis, Ca. tropicalis, and Ca. albicans showed higher cell wall chitin content. Although no relationship between chitin content and antifungal drug susceptibility phenotype was found, an association was established between the paradoxical growth effect in the presence of high caspofungin concentrations and the chitin content. This novel flow cytometry protocol revealed to be a simple and reliable assay to estimate cell wall chitin content of fungi.