971 resultados para ALS data-set


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The software PanGet is a special tool for the download of multiple data sets from PANGAEA. It uses the PANGAEA data set ID which is unique and part of the DOI. In a first step a list of ID's of those data sets to be downloaded must be created. There are two choices to define this individual collection of sets. Based on the ID list, the tool will download the data sets. Failed downloads are written to the file *_failed.txt. The functionality of PanGet is also part of the program Pan2Applic (choose File > Download PANGAEA datasets...) and PanTool2 (choose Basic tools > Download PANGAEA datasets...).

Relevância:

90.00% 90.00%

Publicador:

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper describes seagrass species and percentage cover point-based field data sets derived from georeferenced photo transects. Annually or biannually over a ten year period (2004-2015) data sets were collected using 30-50 transects, 500-800 m in length distributed across a 142 km**2 shallow, clear water seagrass habitat, the Eastern Banks, Moreton Bay, Australia. Each of the eight data sets include seagrass property information derived from approximately 3000 georeferenced, downward looking photographs captured at 2-4 m intervals along the transects. Photographs were manually interpreted to estimate seagrass species composition and percentage cover (Coral Point Count excel; CPCe). Understanding seagrass biology, ecology and dynamics for scientific and management purposes requires point-based data on species composition and cover. This data set, and the methods used to derive it are a globally unique example for seagrass ecological applications. It provides the basis for multiple further studies at this site, regional to global comparative studies, and, for the design of similar monitoring programs elsewhere.

Relevância:

90.00% 90.00%

Publicador:

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The paper focuses on the recent pattern of government consumption expenditure in developing countries and estimates the determinants which have influenced government expenditure. Using a panel data set for 111 developing countries from 1984 to 2004, this study finds evidence that political and institutional variables as well as governance variables significantly influence government expenditure. Among other results, the paper finds new evidence of Wagner's law which states that peoples' demand for service and willingness to pay is income-elastic hence the expansion of public economy is influenced by the greater economic affluence of a nation (Cameron1978). Corruption is found to be influential in explaining the public expenditure of developing countries. On the contrary, size of the economy and fractionalization are found to have significant negative association with government expenditure. In addition, the study finds evidence that public expenditure significantly shrinks under military dictatorship compared with other form of governance.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Complex networks have been extensively used in the last decade to characterize and analyze complex systems, and they have been recently proposed as a novel instrument for the analysis of spectra extracted from biological samples. Yet, the high number of measurements composing spectra, and the consequent high computational cost, make a direct network analysis unfeasible. We here present a comparative analysis of three customary feature selection algorithms, including the binning of spectral data and the use of information theory metrics. Such algorithms are compared by assessing the score obtained in a classification task, where healthy subjects and people suffering from different types of cancers should be discriminated. Results indicate that a feature selection strategy based on Mutual Information outperforms the more classical data binning, while allowing a reduction of the dimensionality of the data set in two orders of magnitude

Relevância:

90.00% 90.00%

Publicador:

Resumo:

La gran cantidad de datos que se registran diariamente en los sistemas de base de datos de las organizaciones ha generado la necesidad de analizarla. Sin embargo, se enfrentan a la complejidad de procesar enormes volúmenes de datos a través de métodos tradicionales de análisis. Además, dentro de un contexto globalizado y competitivo las organizaciones se mantienen en la búsqueda constante de mejorar sus procesos, para lo cual requieren herramientas que les permitan tomar mejores decisiones. Esto implica estar mejor informado y conocer su historia digital para describir sus procesos y poder anticipar (predecir) eventos no previstos. Estos nuevos requerimientos de análisis de datos ha motivado el desarrollo creciente de proyectos de minería de datos. El proceso de minería de datos busca obtener desde un conjunto masivo de datos, modelos que permitan describir los datos o predecir nuevas instancias en el conjunto. Implica etapas de: preparación de los datos, procesamiento parcial o totalmente automatizado para identificar modelos en los datos, para luego obtener como salida patrones, relaciones o reglas. Esta salida debe significar un nuevo conocimiento para la organización, útil y comprensible para los usuarios finales, y que pueda ser integrado a los procesos para apoyar la toma de decisiones. Sin embargo, la mayor dificultad es justamente lograr que el analista de datos, que interviene en todo este proceso, pueda identificar modelos lo cual es una tarea compleja y muchas veces requiere de la experiencia, no sólo del analista de datos, sino que también del experto en el dominio del problema. Una forma de apoyar el análisis de datos, modelos y patrones es a través de su representación visual, utilizando las capacidades de percepción visual del ser humano, la cual puede detectar patrones con mayor facilidad. Bajo este enfoque, la visualización ha sido utilizada en minería datos, mayormente en el análisis descriptivo de los datos (entrada) y en la presentación de los patrones (salida), dejando limitado este paradigma para el análisis de modelos. El presente documento describe el desarrollo de la Tesis Doctoral denominada “Nuevos Esquemas de Visualizaciones para Mejorar la Comprensibilidad de Modelos de Data Mining”. Esta investigación busca aportar con un enfoque de visualización para apoyar la comprensión de modelos minería de datos, para esto propone la metáfora de modelos visualmente aumentados. ABSTRACT The large amount of data to be recorded daily in the systems database of organizations has generated the need to analyze it. However, faced with the complexity of processing huge volumes of data over traditional methods of analysis. Moreover, in a globalized and competitive environment organizations are kept constantly looking to improve their processes, which require tools that allow them to make better decisions. This involves being bettered informed and knows your digital story to describe its processes and to anticipate (predict) unanticipated events. These new requirements of data analysis, has led to the increasing development of data-mining projects. The data-mining process seeks to obtain from a massive data set, models to describe the data or predict new instances in the set. It involves steps of data preparation, partially or fully automated processing to identify patterns in the data, and then get output patterns, relationships or rules. This output must mean new knowledge for the organization, useful and understandable for end users, and can be integrated into the process to support decision-making. However, the biggest challenge is just getting the data analyst involved in this process, which can identify models is complex and often requires experience not only of the data analyst, but also the expert in the problem domain. One way to support the analysis of the data, models and patterns, is through its visual representation, i.e., using the capabilities of human visual perception, which can detect patterns easily in any context. Under this approach, the visualization has been used in data mining, mostly in exploratory data analysis (input) and the presentation of the patterns (output), leaving limited this paradigm for analyzing models. This document describes the development of the doctoral thesis entitled "New Visualizations Schemes to Improve Understandability of Data-Mining Models". This research aims to provide a visualization approach to support understanding of data mining models for this proposed metaphor visually enhanced models.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Molecular and morphological data have important roles in illuminating evolutionary history. DNA data often yield well resolved phylogenies for living taxa, but are generally unattainable for fossils. A distinct advantage of morphology is that some types of morphological data may be collected for extinct and extant taxa. Fossils provide a unique window on evolutionary history and may preserve combinations of primitive and derived characters that are not found in extant taxa. Given their unique character complexes, fossils are critical in documenting sequences of character transformation over geologic time and may elucidate otherwise ambiguous patterns of evolution that are not revealed by molecular data alone. Here, we employ a methodological approach that allows for the integration of molecular and paleontological data in deciphering one of the most innovative features in the evolutionary history of mammals—laryngeal echolocation in bats. Molecular data alone, including an expanded data set that includes new sequences for the A2AB gene, suggest that microbats are paraphyletic but do not resolve whether laryngeal echolocation evolved independently in different microbat lineages or evolved in the common ancestor of bats and was subsequently lost in megabats. When scaffolds from molecular phylogenies are incorporated into parsimony analyses of morphological characters, including morphological characters for the Eocene taxa Icaronycteris, Archaeonycteris, Hassianycteris, and Palaeochiropteryx, the resulting trees suggest that laryngeal echolocation evolved in the common ancestor of fossil and extant bats and was subsequently lost in megabats. Molecular dating suggests that crown-group bats last shared a common ancestor 52 to 54 million years ago.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Precise classification of tumors is critically important for cancer diagnosis and treatment. It is also a scientifically challenging task. Recently, efforts have been made to use gene expression profiles to improve the precision of classification, with limited success. Using a published data set for purposes of comparison, we introduce a methodology based on classification trees and demonstrate that it is significantly more accurate for discriminating among distinct colon cancer tissues than other statistical approaches used heretofore. In addition, competing classification trees are displayed, which suggest that different genes may coregulate colon cancers.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Thermodynamics Conference 2013 (Statistical Mechanics and Thermodynamics Group of the Royal Society of Chemistry), The University of Manchester, 3-6 September 2013.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background: Self-rated health is a subjective measure that has been related to indicators such as mortality, morbidity, functional capacity, and the use of health services. In Spain, there are few longitudinal studies associating self-rated health with hospital services use. The purpose of this study is to analyze the association between self-rated health and socioeconomic, demographic, and health variables, and the use of hospital services among the general population in the Region of Valencia, Spain. Methods: Longitudinal study of 5,275 adults who were included in the 2005 Region of Valencia Health Survey and linked to the Minimum Hospital Data Set between 2006 and 2009. Logistic regression models were used to calculate the odds ratios between use of hospital services and self-rated health, sex, age, educational level, employment status, income, country of birth, chronic conditions, disability and previous use of hospital services. Results: By the end of a 4-year follow-up period, 1,184 participants (22.4 %) had used hospital services. Use of hospital services was associated with poor self-rated health among both men and women. In men, it was also associated with unemployment, low income, and the presence of a chronic disease. In women, it was associated with low educational level, the presence of a disability, previous hospital services use, and the presence of chronic disease. Interactions were detected between self-rated health and chronic disease in men and between self-rated health and educational level in women. Conclusions: Self-rated health acts as a predictor of hospital services use. Various health and socioeconomic variables provide additional predictive capacity. Interactions were detected between self-rated health and other variables that may reflect different complex predictive models, by gender.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

LIDAR (LIght Detection And Ranging) first return elevation data of the Boston, Massachusetts region from MassGIS at 1-meter resolution. This LIDAR data was captured in Spring 2002. LIDAR first return data (which shows the highest ground features, e.g. tree canopy, buildings etc.) can be used to produce a digital terrain model of the Earth's surface. This dataset consists of 74 First Return DEM tiles. The tiles are 4km by 4km areas corresponding with the MassGIS orthoimage index. This data set was collected using 3Di's Digital Airborne Topographic Imaging System II (DATIS II). The area of coverage corresponds to the following MassGIS orthophoto quads covering the Boston region (MassGIS orthophoto quad ID: 229890, 229894, 229898, 229902, 233886, 233890, 233894, 233898, 233902, 233906, 233910, 237890, 237894, 237898, 237902, 237906, 237910, 241890, 241894, 241898, 241902, 245898, 245902). The geographic extent of this dataset is the same as that of the MassGIS dataset: Boston, Massachusetts Region 1:5,000 Color Ortho Imagery (1/2-meter Resolution), 2001 and was used to produce the MassGIS dataset: Boston, Massachusetts, 2-Dimensional Building Footprints with Roof Height Data (from LIDAR data), 2002 [see cross references].