987 resultados para AIRBORNE PARTICULATE
Resumo:
Residential wood combustion has only recently been recognized as a major contributor to air pollution in Switzerland and in other European countries. A source apportionment method using the aethalometer light absorption parameters was applied to five winter campaigns at three sites in Switzerland: a village with high wood combustion activity in winter, an urban background site and a highway site. The particulate mass from traffic (PMtraffic) and wood burning (PMwb) emissions obtained with this model compared fairly well with results from the 14C source apportionment method. PMwb from the model was also compared to well known wood smoke markers such as anhydrosugars (levoglucosan and mannosan) and fine mode potassium, as well as to a marker recently suggested from the Aerodyne aerosol mass spectrometer (mass fragment m/z 60). Additionally the anhydrosugars were compared to the 14C results and were shown to be comparable to literature values from wood burning emission studies using different types of wood (hardwood, softwood). The levoglucosan to PMwb ratios varied much more strongly between the different campaigns (4–13%) compared to mannosan to PMwb with a range of 1–1.5%. Possible uncertainty aspects for the various methods and markers are discussed.
Resumo:
In this study we examined the spatial and temporal variability of particulate organic material (POM) off Oregon during the upwelling season. High-resolution vertical profiling of beam attenuation was conducted along two cross-shelf transects. One transect was located in a region where the shelf is relatively uniform and narrow (off Cascade Head (CH)); the second transect was located in a region where the shelf is shallow and wide (off Cape Perpetua (CP)). In addition, water samples were collected for direct analysis of chlorophyll, particulate organic carbon (POC), and particulate organic nitrogen (PON). Beam attenuation was highly correlated with POC and PON. Striking differences in distribution patterns and characteristics of POM were observed between CH and CP. Off CH, elevated concentrations of chlorophyll and POC were restricted to the inner shelf and were highly variable in time. The magnitude of the observed short-term temporal variability was of the same order as that of the seasonal variability reported in previous studies. Elevated concentrations of nondegraded chlorophyll and POM were observed near the bottom. Downwelling and rapid sinking are two mechanisms by which phytoplankton cells can be delivered to the bottom before being degraded. POM may be then transported across the shelf via the benthic nepheloid layer. Along the CP transect, concentrations of POM were generally higher than they were along the CH transect and extended farther across the shelf. Characteristics of surface POM, namely, C: N ratios and carbon: chlorophyll ratios, differed between the two sites. These differences can be attributed to differences in shelf circulation.
Resumo:
Certain inorganic nickel compounds such as crystalline NiS and Ni(,3)S(,2) are potent inducers of carcinogenesis and in vitro cell transformation, while several closely-related compounds such as amorphous NiS are essentially devoid of genotoxic activity. The phenomenon of selectivity of phagocytosis among such particulate nickel compounds has been hypothesized to account for their widely varying toxicological potency, yet the determinants of this selectivity have not been well characterized. Extracellular medium composition, particle dissolution, and particle surface charge were examined as potential determinants of selective phagocytosis for the carcinogenic crystalline and noncarcinogenic amorphous modifications of NiS. Selectivity and avidity of uptake of crystalline NiS by CHO cells was not dependent upon serum: phagocytosis of crystalline, but not amorphous NiS proceeded readily in a minimal salts/glucose medium at 37(DEGREES)C. The evolution of phagocytosis-inhibiting Ni(II) from the surface of amorphous NiS particles did not demonstrably contribute to the lower uptake of these noncarcinogenic particles despite their somewhat greater dissolution rate than the readily phagocytosed crystalline NiS particles. Significant differences in surface charge were noted between crystalline and amorphous NiS, the former being more negative in charge in distilled water suspension. Exposure of amorphous NiS particles to the vigorously reducing environment of a LiAlH(,4) solution under an inert atmosphere resulted in the particles' acquisition of a more negative surface charge. Amorphous NiS particles thus treated were phagocytosed by CHO cells to an extent similar to that of untreated crystalline NiS particles and likewise were shown to induce morphological transformation of primary Syrian hamster embryo cells with a similar potency. The potentiation of uptake characteristic of LiAlH(,4)-treated amorphous NiS was lost gradually upon storage of particles in ambient oxygenated atmosphere and was lost rapidly by apparent particle surface oxidation in aerated distilled water suspensions aged for up to 7 days. Concomitant with this loss of uptake there occurred a loss of negative surface charge. These results suggest the predominant role of particle surface charge rather than adsorbed serum components or particle dissolution as a determinant of selective phagocytosis among particulate nickel compounds. ^
Resumo:
Indoor and ambient air organic pollutants have been gaining attention because they have been measured at levels with possible health effects. Studies have shown that most airborne polychlorinated biphenyls (PCBs), pesticides and many polycyclic aromatic hydrocarbons (PAHs) are present in the free vapor state. The purpose of this research was to extend recent investigative work with polyurethane foam (PUF) as a collection medium for semivolatile compounds. Open-porous flexible PUFs with different chemical makeup and physical properties were evaluated as to their collection affinities/efficiencies for various classes of compounds and the degree of sample recovery. Filtered air samples were pulled through plugs of PUF spiked with various semivolatiles under different simulated environmental conditions (temperature and humidity), and sampling parameters (flow rate and sample volume) in order to measure their effects on sample breakthrough volume (V(,B)). PUF was also evaluated in the passive mode using organo-phosphorus pesticides. Another major goal was to improve the overall analytical methodology; PUF is inexpensive, easy to handle in the field and has excellent airflow characteristics (low pressure drop). It was confirmed that the PUF collection apparatus behaves as if it were a gas-solid chromatographic system, in that, (V(,B)) was related to temperature and sample volume. Breakthrough volumes were essentially the same using both polyether and polyester type PUF. Also, little change was observed in the V(,B)s after coating PUF with common chromatographic liquid phases. Open cell (reticulated) foams gave better recoveries than closed cell foams. There was a slight increase in (V(,B)) with an increase in the number of cells/pores per inch. The high-density polyester PUF was found to be an excellent passive and active collection adsorbent. Good recoveries could be obtained using just solvent elution. A gas chromatograph equipped with a photoionization detector gave excellent sensitivities and selectivities for the various classes of compounds investigated. ^
Resumo:
Various airborne aldehydes and ketones (i.e., airborne carbonyls) present in outdoor, indoor, and personal air pose a risk to human health at present environmental concentrations. To date, there is no adequate, simple-to-use sampler for monitoring carbonyls at parts per billion concentrations in personal air. The Passive Aldehydes and Ketones Sampler (PAKS) originally developed for this purpose has been found to be unreliable in a number of relatively recent field studies. The PAKS method uses dansylhydrazine, DNSH, as the derivatization agent to produce aldehyde derivatives that are analyzed by HPLC with fluorescence detection. The reasons for the poor performance of the PAKS are not known but it is hypothesized that the chemical derivatization conditions and reaction kinetics combined with a relatively low sampling rate may play a role. This study evaluated the effect of absorption and emission wavelengths, pH of the DNSH coating solution, extraction solvent, and time post-extraction for the yield and stability of formaldehyde, acetaldehyde, and acrolein DNSH derivatives. The results suggest that the optimum conditions for the analysis of DNSHydrazones are the following. The excitation and emission wavelengths for HPLC analysis should be at 250nm and 500nm, respectively. The optimal pH of the coating solution appears to be pH 2 because it improves the formation of di-derivatized acrolein DNSHydrazones without affecting the response of the derivatives of the formaldehyde and acetaldehyde derivatives. Acetonitrile is the preferable extraction solvent while the optimal time to analyze the aldehyde derivatives is 72 hours post-extraction. ^
Resumo:
The Houston region is home to arguably the largest petrochemical and refining complex anywhere. The effluent of this complex includes many potentially hazardous compounds. Study of some of these compounds has led to recognition that a number of known and probable carcinogens are at elevated levels in ambient air. Two of these, benzene and 1,3-butadiene, have been found in concentrations which may pose health risk for residents of Houston.^ Recent popular journalism and publications by local research institutions has increased the interest of the public in Houston's air quality. Much of the literature has been critical of local regulatory agencies' oversight of industrial pollution. A number of citizens in the region have begun to volunteer with air quality advocacy groups in the testing of community air. Inexpensive methods exist for monitoring of ozone, particulate matter and airborne toxic ambient concentrations. This study is an evaluation of a technique that has been successfully applied to airborne toxics.^ This technique, solid phase microextraction (SPME), has been used to measure airborne volatile organic hydrocarbons at community-level concentrations. It is has yielded accurate and rapid concentration estimates at a relatively low cost per sample. Examples of its application to measurement of airborne benzene exist in the literature. None have been found for airborne 1,3-butadiene. These compounds were selected for an evaluation of SPME as a community-deployed technique, to replicate previous application to benzene, to expand application to 1,3-butadiene and due to the salience of these compounds in this community. ^ This study demonstrates that SPME is a useful technique for quantification of 1,3-butadiene at concentrations observed in Houston. Laboratory background levels precluded recommendation of the technique for benzene. One type of SPME fiber, 85 μm Carboxen/PDMS, was found to be a sensitive sampling device for 1,3-butadiene under temperature and humidity conditions common in Houston. This study indicates that these variables affect instrument response. This suggests the necessity of calibration within specific conditions of these variables. While deployment of this technique was less expensive than other methods of quantification of 1,3-butadiene, the complexity of calibration may exclude an SPME method from broad deployment by community groups.^
Resumo:
An investigation was undertaken to determine the chemical characterization of inhalable particulate matter in the Houston area, with special emphasis on source identification and apportionment of outdoor and indoor atmospheric aerosols using multivariate statistical analyses.^ Fine (<2.5 (mu)m) particle aerosol samples were collected by means of dichotomous samplers at two fixed site (Clear Lake and Sunnyside) ambient monitoring stations and one mobile monitoring van in the Houston area during June-October 1981 as part of the Houston Asthma Study. The mobile van allowed particulate sampling to take place both inside and outside of twelve homes.^ The samples collected for 12-h sampling on a 7 AM-7 PM and 7 PM-7 AM (CDT) schedule were analyzed for mass, trace elements, and two anions. Mass was determined gravimetrically. An energy-dispersive X-ray fluorescence (XRF) spectrometer was used for determination of elemental composition. Ion chromatography (IC) was used to determine sulfate and nitrate.^ Average chemical compositions of fine aerosol at each site were presented. Sulfate was found to be the largest single component in the fine fraction mass, comprising approximately 30% of the fine mass outdoors and 12% indoors, respectively.^ Principal components analysis (PCA) was applied to identify sources of aerosols and to assess the role of meteorological factors on the variation in particulate samples. The results suggested that meteorological parameters were not associated with sources of aerosol samples collected at these Houston sites.^ Source factor contributions to fine mass were calculated using a combination of PCA and stepwise multivariate regression analysis. It was found that much of the total fine mass was apparently contributed by sulfate-related aerosols. The average contributions to the fine mass coming from the sulfate-related aerosols were 56% of the Houston outdoor ambient fine particulate matter and 26% of the indoor fine particulate matter.^ Characterization of indoor aerosol in residential environments was compared with the results for outdoor aerosols. It was suggested that much of the indoor aerosol may be due to outdoor sources, but there may be important contributions from common indoor sources in the home environment such as smoking and gas cooking. ^
Resumo:
Objective: To assess the indoor environment of two different types of dental practices regarding VOCs, PM2.5, and ultrafine particulate concentrations and examine the relationship between specific dental activities and contaminant levels. Method: The indoor environments of two selected dental settings (private practice and community health center) will were assessed in regards to VOCs, PM 2.5, and ultrafine particulate concentrations, as well as other indoor air quality parameters (CO2, CO, temperature, and relative humidity). The sampling duration was four working days for each dental practice. Continuous monitoring and integrated sampling methods were used and number of occupants, frequency, type, and duration of dental procedures or activities recorded. Measurements were compared to indoor air quality standards and guidelines. Results: The private practice had higher CO2, CO, and most VOC concentrations than the community health center, but the community health center had higher PM2.5 and ultrafine PM concentrations. Concentrations of p-dichlorobenzene and PM2.5 exceeded some guidelines. Outdoor concentrations greatly influenced the indoor concentration. There were no significant differences in contaminant levels between the operatory and general area. Indoor concentrations during the working period were not always consistently higher than during the nonworking period. Peaks in particulate matter concentration occurred during root canal and composite procedures.^
Resumo:
Background. Research has shown that elevations of only 10 mmHg diastolic blood pressure (BP) and 5 mmHg systolic BP are associated with substantial (as large as 50%) increases in risks for cardiovascular disease, a leading cause of death, worldwide. Epidemiological studies have found that particulate matter (PM) increases blood pressure (BP) and many biological mechanisms which may suggest that the organic matter of PM contributes to the increase in BP. To understand components of PM which may contribute to the increase in BP, this study focuses on diesel particulate matter (DPM) and polycyclic aromatic hydrocarbons (PAHs). To our knowledge, there have been only four epidemiological studies on BP and DPM, and no epidemiological studies on BP and PAHs. ^ Objective. Our objective was to evaluate the association between prevalent hypertension and two ambient exposures: DPM and PAHs amongst the Mano a Mano cohort. ^ Methods. The Mano a Mano cohort which was established by the M.D. Anderson Cancer Center in 2001, is comprised of individuals of Mexican origin residing in Houston, TX. Using geographical information systems, we linked modeled annual estimates of PAHs and DPM at the census track level from the U.S. Environmental Protection Agency's National-Scale Air Toxics Assessment to residential addresses of cohort members. Mixed-effects logistic regression models were applied to determine associations between DPM and PAHs and hypertension while adjusting for confounders. ^ Results. Ambient levels of DPM, categorized into quartiles, were not statistically associated with hypertension and did not indicate a dose response relationship. Ambient levels of PAHs, categorized into quartiles, were not associated with hypertension, but did indicate a dose response relationship in multiple models (for example: Q2: OR = 0.98; 95% CI, 0.73–1.31, Q3: OR = 1.08; 95% CI, 0.82–1.41, Q4: OR = 1.26; 95% CI, 0.94–1.70). ^ Conclusion. This is the first assessment to analyze the relationship between ambient levels of PAHs and hypertension and it is amongst a few studies investigating the association between ambient levels of DPM and hypertension. Future analyses are warranted to explore the effects DPM and PAHs using different categorizations in order to clarify their relationships with hypertension.^
Resumo:
This study represents a secondary analysis of the merging of emergency room visits and daily ozone and PM2.5. Although the adverse health effects of ozone and fine particulate matter have been documented in the literature, evidence regarding the health risks of these two pollutants in Harris County, Texas, is limited. Harris County (Houston) has sufficiently unique characteristics that analysis of these relationships in this setting and with the ozone and industry issues in Houston is informative. The objective of this study was to investigate the association between the joint exposure to ozone and fine particulate matter, and emergency room diagnoses of chronic obstructive pulmonary disease and cardiovascular disease in Harris County, Texas, from 2004 to 2009, with zero and one day lags. ^ The study variables were daily emergency room visits for Harris County, Texas, from 2004 to 2009, temperature, relative humidity, east wind component, north wind component, ozone, and fine particulate matter. Information about each patient's age, race, and gender was also included. The two dichotomous outcomes were emergency room visits diagnoses for chronic obstructive pulmonary disease and cardiovascular disease. Estimates of ozone and PM2.5 were interpolated using kriging, in which estimates of the two pollutants were predicted from monitoring data for every case residence zip code for every day of the six years, over 3 million estimates (one of each pollutant for each case in the database). ^ Logistic regressions were conducted to estimate odds ratios of the two outcomes. Three analyses were conducted: one for all records, another for visits during the four months of April and September of 2005 and 2009, and a third one for visits from zip codes that are close to PM2.5 monitoring stations (east area of Harris County). The last two analyses were designed to investigate special temporal and spatial characteristics of the associations. ^ The dataset included all ER visits surveyed by Safety Net from 2004 to 2009, exceeding 3 million visits for all causes. There were 95,765 COPD and 96,596 CVD cases during this six year period. A 1-μg/m3 increase in PM2.5 on the same day was associated with a 1.0% increase in the odds of chronic obstructive pulmonary disease emergency room diagnoses, a 0.4% increase in the odds of cardiovascular disease emergency room diagnoses, and a 0.2% increase in the odds of cardiovascular disease emergency room diagnoses on the following day. A 1-ppb increase in ozone was associated with a 0.1% increase in the odds of chronic obstructive pulmonary disease emergency room diagnoses on the same day. These four percentages add up to 1.7% of ER visits. That is, over the period of six years, one unit increase for both ozone and PM2.5 (joint increase), resulted in about 55,286 (3,252,102 * 0.017) extra ER visits for CVD or COPD, or 9,214 extra ER visits per year. ^ After adjustment for age, race, gender, day of the week, temperature, relative humidity, east wind component, north wind component, and wind speed, there were statistically significant associations between emergency room chronic obstructive pulmonary disease diagnosis in Harris County, Texas, with joint exposure to ozone and fine particulate matter for the same day; and between emergency room cardiovascular disease diagnosis and exposure to PM2.5 of the same day and the previous day. ^ Despite the small association between the two air pollutants and the health outcomes, this study points to important findings. Namely, the need to identify reasons for the increase of CVD and COPD ER visits over the course of the project, the statistical association between humidity (or whatever other variables for which it may serve as a surrogate) and CVD and COPD cases, and the confirmatory finding that males and blacks have higher odds for the two outcomes, as consistent with other studies. ^ An important finding of this research suggests that the number and distribution of PM2.5 monitors in Harris County - although not evenly spaced geographically—are adequate to detect significant association between exposure and the two outcomes. In addition, this study points to other potential factors that contribute to the rising incidence rates of CVD and COPD ER visits in Harris County such as population increases, patient history, life style, and other pollutants. Finally, results of validation, using a subset of the data demonstrate the robustness of the models.^
Resumo:
Accurate quantitative estimation of exposure using retrospective data has been one of the most challenging tasks in the exposure assessment field. To improve these estimates, some models have been developed using published exposure databases with their corresponding exposure determinants. These models are designed to be applied to reported exposure determinants obtained from study subjects or exposure levels assigned by an industrial hygienist, so quantitative exposure estimates can be obtained. ^ In an effort to improve the prediction accuracy and generalizability of these models, and taking into account that the limitations encountered in previous studies might be due to limitations in the applicability of traditional statistical methods and concepts, the use of computer science- derived data analysis methods, predominantly machine learning approaches, were proposed and explored in this study. ^ The goal of this study was to develop a set of models using decision trees/ensemble and neural networks methods to predict occupational outcomes based on literature-derived databases, and compare, using cross-validation and data splitting techniques, the resulting prediction capacity to that of traditional regression models. Two cases were addressed: the categorical case, where the exposure level was measured as an exposure rating following the American Industrial Hygiene Association guidelines and the continuous case, where the result of the exposure is expressed as a concentration value. Previously developed literature-based exposure databases for 1,1,1 trichloroethane, methylene dichloride and, trichloroethylene were used. ^ When compared to regression estimations, results showed better accuracy of decision trees/ensemble techniques for the categorical case while neural networks were better for estimation of continuous exposure values. Overrepresentation of classes and overfitting were the main causes for poor neural network performance and accuracy. Estimations based on literature-based databases using machine learning techniques might provide an advantage when they are applied to other methodologies that combine `expert inputs' with current exposure measurements, like the Bayesian Decision Analysis tool. The use of machine learning techniques to more accurately estimate exposures from literature-based exposure databases might represent the starting point for the independence from the expert judgment.^