977 resultados para AC electric field


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Tin oxide (SnO2) nanowires are synthesized by Au catalyzed chemical vapor deposition of Sn and C mixture at 900 degrees C by employing a continuous flow of Ar: O-2 (10:1) for an hour. X-ray diffraction and Raman spectroscopy studies indicate that the as-grown SnO2 nanowires are crystalline in nature with tetragonal rutile phase. Electron microscopy studies reveal towards high aspect ratio of nanowires. The field emission studies show that SnO2 nanowires grown on Si substrate exhibit low turn-on field of 1.75 V/mu m (at 0.1 mu A/cm(2)) and long-term emission stability over a period of more than 50 h with a current density of 4 mu A/cm(2) at a constant electric field of 2.25 V/mu m. Hardly any considerable degradation in the emission current is noticed even after 50 h which may be attributed to the high crystallinity of SnO2 nanowires. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Ferroelectricity in ZnO is an unlikely physical phenomenon. Here, we show ferroelectricity in undoped 001] ZnO nanorods due to zinc vacancies. Generation of ferroelectricity in a ZnO nanorod effectively increases its piezoelectricity and turns the ZnO nanorod into an ultrahigh-piezoelectric material. Here using piezoelectric force microscopy (PFM), it is observed that increasing the frequency of the AC excitation electric field decreases the effective d(33). Subsequently, the existence of a reversible permanent electric dipole is also found from the P-E hysteresis loop of the ZnO nanorods. Under a high resolution transmission electron microscope (HRTEM), we observe a zinc blende stacking in the wurtzite stacking of a single nanorod along the growth axis. The zinc blende nature of this defect is also supported by the X-ray diffraction (XRD) and Raman spectra. The presence of zinc vacancies in this basal stacking fault modulates p-d hybridization of the ZnO nanorod and produces a magnetic moment through the adjacent oxygen ions. This in turn induces a reversible electric dipole in the non-centrosymmetric nanostructure and is responsible for the ultrahigh-piezoelectric response in these undoped ZnO nanorods. We reveal that this defect engineered ZnO can be considered to be in the competitive class of ultrahigh-piezoelectric nanomaterials for energy harvesting and electromechanical device fabrication.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents an analysis of crack problems in homogeneous piezoelectrics or on the interfaces between two dissimilar piezoelectric materials based on the continuity of normal electric displacement and electric potential across the crack faces. The explicit analytic solutions are obtained for a single crack in an infinite piezoelectric or on the interface of piezoelectric bimaterials. For homogeneous materials it is found that the normal electric displacement D-2, induced by the crack, is constant along the crack faces which depends only on the remote applied stress fields. Within the crack slit, the perturbed electric fields induced by the crack are also constant and not affected by the applied electric displacement fields. For bimaterials, generally speaking, an interface crack exhibits oscillatory behavior and the normal electric displacement D-2 is a complex function along the crack faces. However, for bimaterials, having certain symmetry, in which an interface crack displays no oscillatory behavior, it is observed that the normal electric displacement D-2 is also constant along the crack faces and the electric field E-2 has the singularity ahead of the crack tip and has a jump across the interface. Energy release rates are established for homogeneous materials and bimaterials having certain symmetry. Both the crack front parallel to the poling axis and perpendicular to the poling axis are discussed. It is revealed that the energy release rates are always positive for stable materials and the applied electric displacements have no contribution to the energy release rates.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The two-dimensional problem of a thermopiezoelectric material containing an elliptic inclusion or a hole subjected to a remote uniform heat flow is studied. Based on the extended Lekhnitskii formulation for thermopiezoelectricity, conformal mapping and Laurent series expansion, the explicit and closed-form solutions are obtained both inside and outside the inclusion (or hole). For a hole problem, the exact electric boundary conditions on the hole surface are used. The results show that the electroelastic fields inside the inclusion or the electric field inside the hole are linear functions of the coordinates. When the elliptic hole degenerates into a slit crack, the electroelastic fields and the intensity factors are obtained. The effect of the heat how direction and the dielectric constant of air inside the crack on the thermal electroelastic fields are discussed. Comparison is made with two special cases of which the closed solutions exist and it is shown that our results are valid.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

An analytical-numerical method is presented for analyzing dispersion and characteristic surface of waves in a hybrid multilayered piezoelectric plate. In this method, the multilayered piezoelectric plate is divided into a number of layered elements with three-nodal-lines in the wall thickness, the coupling between the elastic field and the electric field is considered in each element. The associated frequency dispersion equation is developed and the phase velocity and slowness, as well as the group velocity and slowness are established in terms of the Rayleigh quotient. Six characteristic wave surfaces are introduced to visualize the effects of anisotropy and piezoelectricity on wave propagation. Examples provide a full understanding for the complex phenomena of elastic waves in hybrid multilayered piezoelectric media.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Reconfigurable liquid crystal microlenses employing arrays of multiwalled carbon nanotubes (MWNTs) have been designed and fabricated. The cells consist of arrays of 2 microm high MWNTs grown by plasma-enhanced chemical vapor deposition on silicon with a top electrode of indium tin oxide coated glass positioned 20 microm above the silicon and the gap filled with the nematic liquid crystal BLO48. Simulations have found that, while its nematic liquid crystal aligns with MWNTs within a distance of 10nm, this distance is greatly enhanced by the application of an external electric field. Polarized light experiments show that light is focused with focal lengths ranging from approximately 7 microm to 12 microm.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The integration of high yield, uniform and preferential growth of vertically aligned carbon nanotubes (VACNT) on low stress micromechanical structures was analyzed. A combination of electron-beam crosslinked surface micromachining and direct current plasma enhanced chemical vapor deposition of electric field aligned carbon nanotubes was used for the analysis. The selective placement of high yield and uniform VACNTs on a partially suspended Ni/SiO2/Ti microstructure was also demonstrated.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Liquid crystal variable phase retarders have been incorporated into prototype devices for optical communications system applications, both as endless polarization controllers 1,2,3, and as holographic beam steerers 4. Nematic liquid crystals allow continuous control of the degree of retardation induced at relatively slow switching speeds, while ferroelectric liquid crystal based devices allow fast (sub millisecond) switching, but only between two bistable states. The flexoelectro-optic effect 5,6 in short-pitch chiral nematic liquid crystals allows both fast switching of the optic axis and continuous, electric field dependent control of the degree of rotation of the optic axis. A novel geometry for the flexoelectro-optic effect is presented here, in which the helical axis of the chiral nematic is perpendicular to the cell walls (grandjean texture) and the electric field is applied in the plane of the cell. This facilitates deflection of the optic axis of the uniaxial negatively birefringent material from lying along the direction of propagation to having some component in the polarization plane of the light. The device is therefore optically neutral at zero field for telecommunications wavelengths (1550nm), and allows a continuously variable degree of phase excursion to be induced, up to 2π/3 radians achieved so far in a 40μm thick cell. The retardation has been shown both to appear, on application of the field, and disappear on removal, at speeds of 100-500 μs. The direction of deflection of the optic axis is also dependent on the direction of the field, allowing the possibility, in a converging electrode "cartwheel cell", of endless rotation of the liquid crystal waveplate at a higher rate than achievable through dielectric coupling to plain nematic materials.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper, we demonstrate strong flexoelectric coupling in bimesogenic liquid crystals. This strong coupling is determined via the flexoelectro-optic effect in chiral nematic liquid crystals based on bimesogenic mixtures that are doped with low concentrations of high twisting power chiral additive. Two mixtures were examined: one had a pitch length of p∼300nm, the other had a pitch length of p∼600nm. These mixtures exhibit enantiotropic chiral nematic phases close to room temperature. We found that full-intensity modulation, that is, a rotation of the optic axis of 45° between crossed polarizers, could be achieved at significantly lower applied electric fields (E<5Vμm -1) than previously reported. In fact, for the condition of full-intensity modulation, the lowest electric-field strength recorded was E=2Vμm-1. As a result of a combination of the strong flexoelectric coupling and a divergence in the pitch, tilt angles of the optic axis up to 87°, i.e., a rotation of the optic axis through 174°, were observed. Furthermore, the flexoelastic ratios, which may be considered as a figure-of-merit parameter, were calculated from the results and found to be large, ranging from 1.3to2C/Nm for a temperature range of up to 40°C. © 2006 American Institute of Physics.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A power LDMOS on partial silicon on insulator (PSOI) with a variable low-κ dielectric (VLKD) buried layer and a buried p (BP) layer is proposed (VLKD BPSOI). At a low κ value, the electric field strength in the buried dielectric (EI) is enhanced, and a Si window makes the substrate share the vertical voltage drop, leading to a high vertical breakdown voltage (BV). Moreover, three interface field peaks are introduced by the BP, the Si window, and the VLKD, which modulate the fields in the SOI layer, the VLKD layer, and the substrate; consequently, a high BV is obtained. Furthermore, the BP reduces the specific on-resistance (Ron), and the Si window alleviates the self-heating effect (SHE). The BV for VLKD BPSOI is enhanced by 34.5%, and Ron is decreased by 26.6%, compared with those for the conventional PSOI, and VLKD BPSOI also maintains a low SHE. © 2006 IEEE.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents an analysis of crack problems in homogeneous piezoelectrics or on the interfaces between two dissimilar piezoelectric materials based on the continuity of normal electric displacement and electric potential across the crack faces. The explicit analytic solutions are obtained for a single crack in piezoelectrics or on the interfaces of piezoelectric bimaterials. A class of boundary problems involving many cracks is also solved. For homogeneous materials it is found that the normal electric displacement D-2 induced by the crack is constant along the crack faces which depends only on the applied remote stress field. Within the crack slit, the electric fields induced by the crack are also constant and not affected by the applied electric field. For the bimaterials with real H, the normal electric displacement D-2 is constant along the crack faces and electric field E-2 has the singularity ahead of the crack tip and a jump across the interface.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A new liquid crystal device structure has been developed using a vertically grown Multi-Wall Carbon NanoTube (MWCNT) as a 3D electrode structure, which allows complicated phase only hologram to be displayed using conventional liquid crystal materials. The nanotubes act as an individual electrode sites that generate an electric field profile, dictating the refractive index profile with the liquid crystal cell. Changing the electric field applied makes it possible to tune the properties to modulate the light in an ideal kinoform. A perfect 3D image can be generated by a computer generated hologram by using the diffraction of the light from the hologram pixels to create an optical wave front that appears to come from 3D object. A multilevel phase modulating device based on nematic LC's is also under progress, which will be used with the LC/CNT devices on an LCOS backplane to project a full 3D image from the kinoform.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Enhanced piezoresponse force microscopy was used to study flux closure vortexlike structures of 90° ferroelastic domains at the nanoscale in thin ferroelectric lead zirconium titanate (PZT) films. Using an external electric field, a vortexlike structure was induced far away from a grain boundary, indicating that physical edges are not necessary for nucleation contrary to previous suggestions. We demonstrate two different configurations of vortexlike structures, one of which has not been observed before. The stability of these structures is found to be size dependent, supporting previous predictions. © 2010 The American Physical Society.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The ferroelectric specimen is considered as an aggregation of many randomly oriented domains. According to this mechanism, a multi-domain mechanical model is developed in this paper. Each domain is represented by one element. The applied stress and electric field are taken to be the stress and electric field in the formula of the driving force of domain switching for each element in the specimen. It means that the macroscopic switching criterion is used for calculating the volume fraction of domain switching for each element. By using the hardening relation between the driving force of domain switching and the volume fraction of domain switching calibrated, the volume fraction of domain switching for each element is calculated. Substituting the stress and electric field and the volume fraction of domain switching into the constitutive equation of ferroelectric material, one can easily get the strain and electric displacement for each element. The macroscopic behavior of the ferroelectric specimen is then directly calculated by volume averaging. Meanwhile, the nonlinear finite element analysis for the ferroelectric specimen is carried out. In the finite element simulation, the volume fraction of domain switching for each element is calculated by using the same method mentioned above. The interaction between different elements is taken into account in the finite element simulation and the local stress and electric field for each element is obtained. The macroscopic behavior of the specimen is then calculated by volume averaging. The computation results involve the electric butterfly shaped curves of axial strain versus the axial electric field and the hysteresis loops of electric displacement versus the electric field for ferroelectric specimens under the uniaxial coupled stress and electric field loading. The present theoretical prediction agrees reasonably with the experimental results.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Electrowetting is one of the most effective methods to enhance wettability. A significant change of contact angle for the liquid droplet can result from the surface microstructures and the external electric field, without altering the chemical composition of the system. During the electrowetting process on a rough surface, the droplet exhibits a sharp transition from the Cassie-Baxter to the Wenzel regime at a low critical voltage. In this paper, a theoretical model for electrowetting is put forth to describe the dynamic electrical control of the wetting behavior at the low voltage, considering the surface topography. The theoretical results are found to be in good agreement with the existing experimental results. (c) Koninklijke Brill NV, Leiden, 2008.