941 resultados para A. Nano-structures
Resumo:
Solving multi-stage oligopoly models by backward induction can easily become a com- plex task when rms are multi-product and demands are derived from a nested logit frame- work. This paper shows that under the assumption that within-segment rm shares are equal across segments, the analytical expression for equilibrium pro ts can be substantially simpli ed. The size of the error arising when this condition does not hold perfectly is also computed. Through numerical examples, it is shown that the error is rather small in general. Therefore, using this assumption allows to gain analytical tractability in a class of models that has been used to approach relevant policy questions, such as for example rm entry in an industry or the relation between competition and location. The simplifying approach proposed in this paper is aimed at helping improving these type of models for reaching more accurate recommendations.
Resumo:
Developing Better Services Modernising Hospitals and Reforming Structures
Resumo:
In the present study, some morphological structures of antennae, maxillary palps and caudal setae of fourth instar larvae of laboratory-reared phlebotomine sand flies (Lutzomyia longipalpis, L. migonei, L. evandroi, L. lenti, L. sericea, L. whitmani and L. intermedia) of the State of Ceará, Brazil, were examined under scanning electron microscopy. The antennal structures exhibited considerable variation in the morphology and position. A prominent digitiform distal segment has been observed only on the antenna of species of the subgenus Nyssomyia. The taxonomic relevance of this and other antennal structure is discussed. The papiliform structures found in the maxillae and the porous structures of the caudal setae of all species examined may have chemosensory function. Further studies with transmission electron microscopy are needed to better understand the physiological function of these external structures.
Resumo:
The control of optical fields on the nanometre scale is becoming an increasingly important tool in many fields, ranging from channelling light delivery in photovoltaics and light emitting diodes to increasing the sensitivity of chemical sensors to single molecule levels. The ability to design and manipulate light fields with specific frequency and space characteristics is explored in this project. We present an alternative realisation of Extraordinary Optical Transmission (EOT) that requires only a single aperture and a coupled waveguide. We show how this waveguide-resonant EOT improves the transmissivity of single apertures. An important technique in imaging is Near-Field Scanning Optical Microscopy (NSOM); we show how waveguide-resonant EOT and the novel probe design assist in improving the efficiency of NSOM probes by two orders of magnitude, and allow the imaging of single molecules with an optical resolution of as good as 50 nm. We show how optical antennas are fabricated into the apex of sharp tips and can be used in a near-field configuration.
Resumo:
The Minister for Health decided, in July 2013, to establish a Working Group, chaired by Professor Brian MacCraith, President of DCU, to carry out a strategic review of medical training and career structure. The Working Group will examine and make high-level recommendations relating to training and career pathways for doctors with a view to: From January-April 2014, the Working Group prioritised work on career structures and pathways following completion of specialist training in order to report to the Minister for Health on these issues in this report. Download the Report (PDF, 800 kb) Â
Resumo:
Recent studies have pointed out a similarity between tectonics and slope tectonic-induced structures. Numerous studies have demonstrated that structures and fabrics previously interpreted as of purely geodynamical origin are instead the result of large slope deformation, and this led in the past to erroneous interpretations. Nevertheless, their limit seems not clearly defined, but it is somehow transitional. Some studies point out continuity between failures developing at surface with upper crust movements. In this contribution, the main studies which examine the link between rock structures and slope movements are reviewed. The aspects regarding model and scale of observation are discussed together with the role of pre-existing weaknesses in the rock mass. As slope failures can develop through progressive failure, structures and their changes in time and space can be recognized. Furthermore, recognition of the origin of these structures can help in avoiding misinterpretations of regional geology. This also suggests the importance of integrating different slope movement classifications based on distribution and pattern of deformation and the application of structural geology techniques. A structural geology approach in the landslide community is a tool that can greatly support the hazard quantification and related risks, because most of the physical parameters, which are used for landslide modeling, are derived from geotechnical tests or the emerging geophysical approaches.
Resumo:
Insecticide effects of deltamethrin 2.5% SC (flowable solution) on different substrates and triatomine infestation rates in two indigenous villages (Estancia Salzar and Nueva Promesa) of the Paraguayan Chaco are reported. This field study was carried out to determine the extent to which variability in spray penetration may affect residual action of the insecticide. A total of 117 houses in the two villages were sprayed. Filter papers discs were placed on aluminium foil pinned to walls and roofs in selected houses and the applied insecticide concentration was determined by high pressure liquid chromatography (HPLC). The target dose rate was 25 mg a.i./m². The mean actual applied dose in Estancia Salazar was 11.2 ± 3.1 mg a.i./m² in walls and 11.9 ± 5.6 mg a.i./m² in roofs while in Nueva Promesa, where duplicates were carried out, the mean values were 19.9 ± 6.9 mg a.i./m² and 34.7 ± 10.4 mg a.i./m² in walls and 28.8 ± 19.2 mg a.i./m² and 24.9 ± 21.8 mg a.i./m² in roofs. This shows the unevenness and variability of applied doses during spraying campaigns, and also the reduced coverage over roof surfaces. However, wall bioassays with Triatoma infestans nymphs in a 72 h exposure test showed that deposits of deltamethrin persisted in quantities sufficient to kill triatomines until three months post spraying. Knockdown by deltamethrin on both types of surfaces resulted in 100% final mortality. A lower insecticidal effect was observed on mud walls. However, three months after treatment, sprayed lime-coated mud surfaces displayed a twofold greater capacity (57.5%) to kill triatomines than mud sprayed surfaces (25%). Re-infestation was detected by manual capture only in one locality, six months after spraying,
Resumo:
Law and science have partnered together in the recent past to solve major public health issues, ranging from asbestos to averting the threat of a nuclear holocaust. This paper travels to a legal and health policy frontier where no one has gone before, examining the role of precautionary principles under international law as a matter of codified international jurisprudence by examining draft terminology from prominent sources including the Royal Commission on Environmental Pollution (UK), the Swiss Confederation, the USA (NIOSH) and the OECD. The research questions addressed are how can the benefits of nanotechnology be realized, while minimizing the risk of harm? What law, if any, applies to protect consumers (who comprise the general public, nanotechnology workers and their corporate social partners) and other stakeholders within civil society from liability? What law, if any, applies to prevent harm?
Resumo:
Bio-nano interactions can be defined as the study of interactions between nanoscale entities and biological systems such as, but not limited to, peptides, proteins, lipids, DNA and other biomolecules, cells and cellular receptors and organisms including humans. Studying bio-nano interactions is particularly useful for understanding engineered materials that have at least one dimension in the nanoscale. Such materials may consist of discrete particles or nanostructured surfaces. Much of biology functions at the nanoscale; therefore, our ability to manipulate materials such that they are taken up at the nanoscale, and engage biological machinery in a designed and purposeful manner, opens new vistas for more efficient diagnostics, therapeutics (treatments) and tissue regeneration, so-called nanomedicine. Additionally, this ability of nanomaterials to interact with and be taken up by cells allows nanomaterials to be used as probes and tools to advance our understanding of cellular functioning. Yet, as a new technology, assessment of the safety of nanomaterials, and the applicability of existing regulatory frameworks for nanomaterials must be investigated in parallel with development of novel applications. The Royal Society meeting 'Bio-nano interactions: new tools, insights and impacts' provided an important platform for open dialogue on the current state of knowledge on these issues, bringing together scientists, industry, regulatory and legal experts to concretize existing discourse in science law and policy. This paper summarizes these discussions and the insights that emerged.