1000 resultados para 77-538A


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El objetivo de este trabajo fue determinar y validar con datos independientes las ecuaciones de predicción obtenidas para estimar in vivo la composición corporal de conejos en crecimiento utilizando la técnica de impedancia bioeléctrica (BIA). Las ecuaciones se calcularon mediante un análisis de regresión múltiple a partir de las medidas de impedancia presentadas en el trabajo anterior (Saiz et al., 2011) y de otras variables independientes que fueron incluidas en el modelo, tras hacer un análisis de selección de variables, como la edad, el peso y la longitud del animal. Los coeficientes de determinación (R2) de las ecuaciones para estimar la humedad (g), la proteína (g), la grasa (g), las cenizas (g) y la energía (MJ) fueron: 0,99, 0,99, 0,97, 0,98 y 0,99, y los errores medios de predicción relativos (EMPR): 2,24, 5,99, 16,3, 8,56 y 7,81%, respectivamente. El R2 y EMPR para estimar el porcentaje de humedad corporal fueron de 0,85 y 1,98%, respectivamente. Para predecir los contenidos, expresados sobre materia seca (MS), de proteína (%), grasa (%), cenizas (%) y energía (kJ/100g), el R2 obtenido fue 0,79, 0,83, 0,71 y 0,86, respectivamente y el EMPR 4,78, 12,2, 8,39 y 3,26%, respectivamente. La reactancia estuvo negativamente correlacionada con el contenido en humedad, cenizas y proteína bruta (r=-0,32, Pmenor que0,0001; r=-0,20, Pmenor que0,05; r=-0,26, Pmenor que0,01) pero positivamente con el de grasa y energía (r=0,23 y r=0,24; Pmenor que0,01). Al contrario ocurrió con la resistencia, que estuvo positivamente correlacionada con el contenido en humedad, cenizas y proteína bruta (r=0,31, Pmenor que0,001; r=0,28, Pmenor que0,001; r=0,37, Pmenor que0,0001) pero negativamente con el de grasa y energía (r=-0,36 y r=-0,35; Pmenor que0,0001). Así mismo, la edad del animal, estuvo negativamente correlacionada con el contenido en humedad, proteína y cenizas (r=-0,79, r=-0,67 y r=-0,80; Pmenor que0,0001) y positivamente con la grasa y energía (r=0,78 y r=0,81; Pmenor que0,0001). Se puede considerar la técnica BIA como una técnica útil para estimar in vivo la composición corporal de los conejos en crecimiento de 25 a 77 días de edad.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En este trabajo se realiza una caracterización mecánica y microestructural del material masivo superconductor YBCO. El material ha sido procesado mediante dos técnicas distintas, Top-Seeding Melt Growth (TSMG) y Bridgman, y este estudio profundiza en el efecto de la microestructura, el método de procesado y la temperatura de ensayo en el comportamiento mecánico de material. Con el fin de conseguir un amplio conocimiento de sus propiedades mecánicas se han realizado ensayos de resistencia a flexión, tenacidad de fractura y dureza Vickers a 300 y 77 K. Asimismo, se llevaron a cabo ensayos de nanoindentación y el tamaño crítico del defecto semielíptico. Los resultados obtenidos muestran que el comportamiento mecánico de los dos materiales está controlado por defectos y grietas, introducidas durante el procesado. También se ha encontrado un buen acuerdo entre el tamaño del defecto critico detectado experimentalmente con los valores obtenidos mediante de análisis de mecánica de fractura.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Las Comunicaciones Opticas, no difieren radicalmente de la convencionales por otras técnicas. De hecho, no son sino una síntesis de tecnologías muy diversas que coinciden en el campo común de transmitir información. Campos tan dispares como la Electrónica Cuántica-, la Física de los Semiconductores,la Optica, la Teoría de la Comunicación, la Electrónica de dispositívos y circuitos, las Tecnologías de Fabricación de vidrios por citar algunos, se dan cita aquí.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El gran esfuerzo realizado durante la última década con el fin de integrar los diferentes materiales superconductores en el campo de los sistemas eléctricos y en otras aplicaciones tecnológicas ha dado lugar a un campo de investigación amplio y prometedor. El comportamiento eléctrico de los Superconductores de Alta Temperatura (SAT) crítica (masivo y cintas) depende de diferentes parámetros desde su fabricación hasta la aplicación final con imanes o cables. Sin embargo, las aplicaciones prácticas de estos materiales están fuertemente vinculadas con su comportamiento mecánico tanto a temperatura ambiente (manipulación durante fabricación o instalación) como a temperaturas criogénicas (condiciones de servicio). En esta tesis se ha estudiado el comportamiento mecánico de materiales masivos y cintas de alta temperatura crítica a 300 y 77 K (utilizando nitrógeno líquido). Se han obtenido la resistencia en flexión, la tenacidad de fractura y la resistencia a tracción a la temperatura de servicio y a 300 K. Adicionalmente, se ha medido la dureza mediante el ensayo Vickers y nanoindentación. El módulo Young se midió mediante tres métodos diferentes: 1) nanoindentación, 2) ensayos de flexión en tres puntos y 3) resonancia vibracional mediante grindosonic. Para cada condición de ensayo, se han analizado detalladamente las superficies de fractura y los micromecanismos de fallo. Las propiedades mecánicas de los materiales se han comparado con el fin de entender la influencia de las técnicas de procesado y de las características microestructurales de los monocristales en su comportamiento mecánico. Se ha estudiado el comportamiento electromecánico de cintas comerciales superconductoras de YBCO mediante ensayos de tracción y fatiga a 77 y 300 K. El campo completo de deformaciones en la superficie del material se ha obtenido utilizando Correlación Digital de Imágenes (DIC, por sus siglas en inglés) a 300 K. Además, se realizaron ensayos de fragmentación in situ dentro de un microscopio electrónico con el fin de estudiar la fractura de la capa superconductora y determinar la resistencia a cortante de la intercara entre el substrato y la capa cerámica. Se ha conseguido ver el proceso de la fragmentación aplicando tensión axial y finalmente, se han implementado simulaciones mediante elementos finitos para reproducir la delaminación y el fenómeno de la fragmentación. Por último, se han preparado uniones soldadas entre las capas de cobre de dos cintas superconductoras. Se ha medido la resistencia eléctrica de las uniones con el fin de evaluar el metal de soldadura y el proceso. Asimismo, se ha llevado a cabo la caracterización mecánica de las uniones mediante ensayos "single lap shear" a 300 y 77 K. El efecto del campo magnético se ha estudiado aplicando campo externo hasta 1 T perpendicular o paralelo a la cinta-unión a la temperatura de servicio (77 K). Finalmente, la distribución de tensiones en cada una de las capas de la cinta se estudió mediante simulaciones de elementos finitos, teniendo en cuenta las capas de la cinta mecánicamente más representativas (Cu-Hastelloy-Cu) que influyen en su comportamiento mecánico. The strong effort that has been made in the last years to integrate the different superconducting materials in the field of electrical power systems and other technological applications led to a wide and promising research field. The electrical behavior of High Temperature Superconducting (HTS) materials (bulk and coated conductors) depends on different parameters since their processing until their final application as magnets or cables. However, practical applications of such materials are strongly related with their mechanical performance at room temperature (handling) as well as at cryogenic temperatures (service conditions). In this thesis, the mechanical behavior of HTS bulk and coated conductors was investigated at 300 and 77 K (by immersion in liquid nitrogen). The flexural strength, the fracture toughness and the tensile strength were obtained at service temperature as well as at 300 K. Furthermore, their hardness was determined by Vickers measurements and nanoindentation and the Young's modulus was measured by three different techniques: 1) nanoindentation, 2) three-point bending tests and 3) vibrational resonance with a grindosonic device. The fracture and deformation micromechanics have been also carefully analyzed for each testing condition. The comparison between the studied materials has been performed in order to understand the influence of the main sintering methods and the microstructural characteristics of the single grains on the macroscopic mechanical behavior. The electromechanical behavior of commercial YBCO coated conductors was studied. The mechanical behavior of the tapes was studied under tensile and fatigue tests at 77 and 300 K. The complete strain field on the surface of the sample was obtained by applying Digital Image Correlation (DIC) at 300 K. Addionally, in situ fragmentation tests inside a Scanning Electron Microscope (SEM) were carried out in order to study the fragmentation of the superconducting layer and determine the interfacial shear strength between substrate and ceramic layer. The fragmentation process upon loading of the YBCO layer has been observed and finally, Finite Element Simulations were employed to reproduce delamination and fragmentation phenomena. Finally, joints between the stabilizing Cu sides of two coated conductors have been prepared. The electrical resistivity of the joints was measured for the purpose of qualifying the soldering material and evaluating the soldering process. Additionally, mechanical characterization under single lap shear tests at 300 and 77 K has been carried out. The effect of the applied magnetic field has been studied by applying external magnetic field up to 1 T perpendicular and parallel to the tape-joint at service temperature (77 K). Finally, finite element simulations were employed to study the distribution of the stresses in earch layer, taking into account the three mechanically relevant layers of the coated conductor (Cu-Hastelloy-Cu) that affect its mechanical behavior