993 resultados para 727
Resumo:
Titanium alloys of Ti-Si-B system were manufactured by blended elemental powder method using Ti, Si and B powders as starting materials. It was found that uniaxial and isostatic pressing followed by hot pressing at around 1000°C, for 20 minutes, provided good densification of such alloys. The physicochemical studies were performed by means of scanning electron microscopy, X-ray diffraction, atomic force microscopy and microindentation/wear tests. The investigations revealed a multiphase microstructure formed mainly by α-titanium, Ti6Si2B, Ti5Si3, TiB and Ti3Si phases. The phase transformations after pressureless sintering at 1200°C was also studied by X-ray diffraction for the Ti-18Si-6B composition. As stated in some other researches, these intermetallics in the α-titanium matrix provide high wear resistance and hardness, with the best wear rate of 0.2 mm3/N.m and the highest hardness of around 1300 HV. © (2012) Trans Tech Publications, Switzerland.
Resumo:
This work presents the structural characterization of Ti-10Si-5B and Ti-20Si-10B (at-%) alloys produced by high-pressure assisted sintering. Sintering was performed in air at 1100 and 1200°C for 60 s using pressure levels of 5 GPa. Structural evaluation of sintered samples was conducted by means of scanning electron microscopy and energy dispersive spectrometry. Samples were successfully consolidated after sintering, which presented theoretical density values higher than 99%. The microstructures of the sintered Ti-10Si-5B and Ti-20Si-10B alloys revealed the presence of the TiSS, TiB, TiB2, Ti5Si3, Ti5Si4, TiSi, and TiSi2.phases. A small amount of Ti6Si2B was formed after high-pressure assisted sintering of the Ti-20Si-10B alloy (5GPa, 1100°C for 60 s) indicating that equilibrium structures were not achieved during short sintering times. No oxygen and carbon contamination was detected in structures of Ti-Si-B alloys after high-pressure sintering at 1100 and 1200°C without controlled atmosphere. © (2012) Trans Tech Publications, Switzerland.
Resumo:
The objective of the present study was to evaluate the genetic and non-genetic effects that influencevigor at birth and preweaning mortality in Nellore calves. A total of 11,727 records of births that occurred between 1978 and 2006, offspring of 363 sires, were analyzed. Poor calf vigor at birth (VB) and preweaning mortality divided into stillbirth (SB), early mortality (EM) and total mortality (TM) were analyzed as binary variables. Generalized linear models were used for the evaluation of non-genetic effects and generalized linear mixed models for genetic effects (sire and animal models). The incidences were 4.75% for VB, 2.66% for SB, 5.28% for EM, and 7.99% for TM. Birth weight was the effect that most influenced the traits studied. Calves weighing less than 22kg(females) and less than 24kg (males) were at a higher risk of low vigor and preweaning mortality. Preweaning mortality was higher among calves born from cows aged .3 and .11 years at calving compared with cows aged 7 to 10 years. Male calves presented less vigor and higher preweaning mortality than female calves. Selection for postweaning weight did not influence preweaning mortality. The heritability estimates ranged between 0.01 and 0.09 for VB, 0.00 and 0.27 for SB, 0.03 and 0.17 for EM and 0.02 and 0.10 for TM. Stillbirth should be included as a selection criterion in breeding programs of Nellore cattle, alone or as part of a selection index, aiming to reduce preweaning mortality. © 2013 Sociedade Brasileira de Zootecnia.
Resumo:
Incluye Bibliografía
Resumo:
Incluye Bibliografía
Resumo:
Incluye Bibliografía
Resumo:
Incluye Bibliografía
Resumo:
Incluye Bibliografía
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Includes bibliography
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
This report analyses the agriculture, energy, and health sectors in Trinidad and Tobago to assess the potential economic impacts of climate change on the sectors. The fundamental aim of this report is to assist with the development of strategies to deal with the potential impact of climate change on Trinidad and Tobago. It also has the potential to provide essential input for identifying and preparing policies and strategies to help advance the Caribbean subregion closer to solving problems associated with climate change and attaining individual and regional sustainable development goals. Some of the key anticipated impacts of climate change for the Caribbean include elevated air and sea-surface temperatures, sea-level rise, possible changes in extreme events and a reduction in freshwater resources. The economic impact of climate change on the three sectors was estimated for the A2 and B2 IPCC scenarios until 2050. An exploration of various adaptation strategies was also undertaken for each sector using standard evaluation techniques. The study of the impact of climate change on the agriculture sector focused on root crops, green vegetables and fisheries. For these sectors combined, the cumulative loss under the A2 scenario is calculated as approximately B$2.24 and approximately B$1.72 under the B2 scenario by 2050. This is equivalent to 1.37% and 1.05% of the 2008 GDP under the A2 and B2 scenarios, respectively. Given the potential for significant damage to the agriculture sector a large number of potential adaptation measures were considered. Out of these a short-list of 10 potential options were selected by applying 10 evaluation criteria. All of the adaptation strategies showed positive benefits. The analysis indicate that the options with the highest net benefits are: (1) Building on-farm water storage, (2) Mainstreaming climate change issues into agricultural management and (3) Using drip irrigation. Other attractive options include water harvesting. The policy decisions by governments should include these assessments, the omitted intangible benefits, as well as the provision of other social goals such as employment. The analysis of the energy sector has shown that the economic impact of climate change during 2011-2050 is similar under the A2 (US$142.88 million) and B2 (US$134.83 million) scenarios with A2 scenario having a slightly higher cost (0.737% of 2009 GDP) than the B2 scenario (0.695% of 2009 GDP) for the period. On the supply side, analyses indicate that Trinidad and Tobago’s energy sector will be susceptible to the climate change policies of major energy-importing countries (the United States of America and China), and especially to their renewable energy strategies. Implementation of foreign oil substitution policy by the United States of America will result in a decline in Trinidad and Tobago’s Liquefied Natural Gas (LNG) export (equivalent to 2.2% reduction in 2009 GDP) unless an alternative market is secured for the lost United States of America market. China, with its rapid economic growth and the highest population in the world, offers a potential replacement market for Trinidad and Tobago’s LNG export. In this context the A2 scenario will offer the best option for Trinidad and Tobago’s energy sector. The cost-benefit analysis undertaken on selected adaptation strategies reveal that the benefit-cost ratio of replacing electric water heaters with solar water heaters is the most cost-effective. It was also found that the introduction of Compact Fluorescent Light (CFL) and Variable Refrigerant Volume (VRV) air conditioners surpasses the projected cost of increased electricity consumption due to climate change, and provides an economic rationale for the adoption of these adaptation options even in a situation of increased electricity consumption occasioned by climate change. Finally, the conversion of motor fleets to Compressed Natural Gas (CNG) is a cost-effective adaptation option for the transport sector, although it has a high initial cost of implementation and the highest per capita among the four adaptation options evaluated. To investigate the effect of climate change on the health sector dengue fever, leptospirosis, food borne illnesses, and gastroenteritis were examined. The total number of new dengue cases for the period 2008 to 2050 was 204,786 for BAU, 153,725 for A2 and 131,890 for the B2 scenario. With regard to the results for leptospirosis, A2 and B2 seem to be following a similar path with total number of new cases in the A2 scenario being 9,727 and 9,218 cases under the B2 scenario. Although incidence levels in the BAU scenario coincided with those of A2 and B2 prior to 2020, they are somewhat lower post 2020. A similar picture emerges for the scenarios as they relate to food-borne illnesses and to gastroenteritis. Specifically for food-borne illnesses, the BAU scenario recorded 27,537 cases, the A2 recorded 28,568 cases and the B2 recorded 28,679 cases. The focus on the selected sources of morbidity in the health sector has highlighted the fact that the vulnerability of the country’s health sector to climate change does not depend solely on exogenously derived impacts, but also on the behaviour and practices among the population. It is clear that the vulnerability which became evident in the analysis of the impacts on dengue fever, leptospirosis and food-borne illnesses is not restricted solely to climate or other external factors. The most important adaptation strategy being recommended targets lifestyle, behaviour and attitude changes. The population needs to be encouraged to alter their behaviours and practices so as to minimise their exposure to harmful outcomes as it relates to the incidence of these diseases.
Resumo:
This report analyses the coastal and human settlements, tourism and transport sectors in Barbados to assess the potential economic impact of climate change on the sectors. The fundamental aim of this report is to assist with the development of strategies to deal with the potential impact of climate change on Barbados. Some of the key anticipated manifestations of climate change for the Caribbean include elevated air and sea-surface temperatures, sea-level rise, possible changes in extreme events and a reduction in freshwater resources. The economic impact of climate change on the three sectors was estimated for the A2 and B2 IPCC scenarios until 2050 (tourism and transport sectors) and 2100 (coastal and human settlements sector). An exploration of various adaptation strategies was also undertaken for each sector using standard evaluation techniques. The analysis has shown that based upon exposed assets and population, SLR can be classified as having the potential to create potential catastrophe in Barbados. The main contributing factor is the concentration of socioeconomic infrastructure along the coastline in vulnerable areas. The A2 and B2 projections have indicated that the number of catastrophes that can be classified as great is likely to be increased for the country. This is based upon the possible effects of the projected unscheduled impacts to the economy both in terms of loss of life and economic infrastructure. These results arise from the A2 and B2 projections, thereby indicating that growth in numbers and losses are largely due to socioeconomic changes over the projection period and hence the need for increased adaptation strategies. A key adaptation measure recommended is for the government of Barbados to begin reducing the infrastructure deficit by continuously investing in protective infrastructure to decrease the country’s vulnerability to changes in the climate. With regard to the tourism sector, it was found that by combining the impacts due to a reduction in tourist arrivals, coral reef loss and SLR, estimated total economic impact of climate change is US $7,648 million (A2 scenario) and US $5,127 million (B2 scenario). An economic analysis of the benefits and costs of several adaptation options was undertaken to determine the cost effectiveness of each one and it was found that four (4) out of nine (9) options had high cost-benefit ratios. It is therefore recommended that the strategies that were most attractive in terms of the cost-benefit ratios be pursued first and these were: (1) enhanced reef monitoring systems to provide early warning alerts of bleaching events; (2) artificial reefs or fish-aggregating devices; (3) development of national adaptation plans (levee, sea wall and boardwalk); (4) revision of policies related to financing carbon neutral tourism; and (5) increasing recommended design wind speeds for new tourism-related structures. The total cost of climate change on international transportation in Barbados aggregated the impacts of changes in temperature and precipitation, new climate policies and SLR. The impact for air transportation ranges from US$10,727 million (B2 scenario) to US$12,279 million (A2 scenario) and for maritime transportation impact estimates range from US$1,992 million (B2 scenario) to US$2,606 million (A2 scenario). For international transportation as a whole, the impact of climate change varies from US$12,719 million under the B2 scenario to US$14,885 million under the A2 scenario. Barbados has the institutions set up to implement adaptive strategies to strengthen the resilience of the existing international transportation system to climate change impacts. Air and sea terminals and facilities can be made more robust, raised, or even relocated as need be, and where critical to safety and mobility, expanded redundant systems may be considered.