956 resultados para 3D-object recognition


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inhibition of return (IOR) effects, in which participants detect a target in a cued box more slowly than one in an uncued box, suggest that behavior is aided by inhibition of recently attended irrelevant locations. To investigate the controversial question of whether inhibition can be applied to object identity in these tasks, in the present research we presented faces upright or inverted during cue and/or target sequences. IOR was greater when both cue and target faces were upright than when cue and/or target faces were inverted. Because the only difference between the conditions was the ease of facial recognition, this result indicates that inhibition was applied to object identity. Interestingly, inhibition of object identity affected IOR both whenencoding a cue face andretrieving information about a target face. Accordingly, we propose that episodic retrieval of inhibition associated with object identity may mediate behavior in cuing tasks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes a framework for building virtual collections of several digital objects and presenting them in an interactive 3D environment, rendered in a web browser. Using that environment, the website visitor can examine a given collection from a first-person perspective by walking around and inspecting each object in detail by viewing it from any angle. The rendering and visualization of the models is done solely by the web browser with the use of HTML5 and the Three.js JavaScript library, without any additional requirements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The object of this paper is presenting the University of Economics – Varna, using a 3D model with 3Ds MAX. Created in 1920, May 14, University of Economics - Varna is a cultural institution with a place and style of its own. With the emergence of the three-dimensional modeling we entered a new stage of the evolution of computer graphics. The main target is to preserve the historical vision, to demonstrate forward-thinking and using of future-oriented approaches.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This dissertation establishes a novel system for human face learning and recognition based on incremental multilinear Principal Component Analysis (PCA). Most of the existing face recognition systems need training data during the learning process. The system as proposed in this dissertation utilizes an unsupervised or weakly supervised learning approach, in which the learning phase requires a minimal amount of training data. It also overcomes the inability of traditional systems to adapt to the testing phase as the decision process for the newly acquired images continues to rely on that same old training data set. Consequently when a new training set is to be used, the traditional approach will require that the entire eigensystem will have to be generated again. However, as a means to speed up this computational process, the proposed method uses the eigensystem generated from the old training set together with the new images to generate more effectively the new eigensystem in a so-called incremental learning process. In the empirical evaluation phase, there are two key factors that are essential in evaluating the performance of the proposed method: (1) recognition accuracy and (2) computational complexity. In order to establish the most suitable algorithm for this research, a comparative analysis of the best performing methods has been carried out first. The results of the comparative analysis advocated for the initial utilization of the multilinear PCA in our research. As for the consideration of the issue of computational complexity for the subspace update procedure, a novel incremental algorithm, which combines the traditional sequential Karhunen-Loeve (SKL) algorithm with the newly developed incremental modified fast PCA algorithm, was established. In order to utilize the multilinear PCA in the incremental process, a new unfolding method was developed to affix the newly added data at the end of the previous data. The results of the incremental process based on these two methods were obtained to bear out these new theoretical improvements. Some object tracking results using video images are also provided as another challenging task to prove the soundness of this incremental multilinear learning method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neuroimaging studies of episodic memory, or memory of events from our personal past, have predominantly focused their attention on medial temporal lobe (MTL). There is growing acknowledgement however, from the cognitive neuroscience of memory literature, that regions outside the MTL can support episodic memory processes. The medial prefrontal cortex is one such region garnering increasing interest from researchers. Using behavioral and functional magnetic resonance imaging measures, over two studies, this thesis provides evidence of a mnemonic role of the medial PFC. In the first study, participants were scanned while judging the extent to which they agreed or disagreed with the sociopolitical views of unfamiliar individuals. Behavioral tests of associative recognition revealed that participants remembered with high confidence viewpoints previously linked with judgments of strong agreement/disagreement. Neurally, the medial PFC mediated the interaction between high-confidence associative recognition memory and beliefs associated with strong agree/disagree judgments. In an effort to generalize this finding to well-established associative information, in the second study, we investigated associative recognition memory for real-world concepts. Object-scene pairs congruent or incongruent with a preexisting schema were presented to participants in a cued-recall paradigm. Behavioral tests of conceptual and perceptual recognition revealed memory enhancements arising from strong resonance between presented pairs and preexisting schemas. Neurally, the medial PFC tracked increases in visual recall of schema-congruent pairs whereas the MTL tracked increases in visual recall of schema-incongruent pairs. Additionally, ventral areas of the medial PFC tracked conceptual components of visual recall specifically for schema-congruent pairs. These findings are consistent with a recent theoretical proposal of medial PFC contributions to memory for schema-related content. Collectively, these studies provide evidence of a role for the medial PFC in associative recognition memory persisting for associative information deployed in our daily social interactions and for those associations formed over multiple learning episodes. Additionally, this set of findings advance our understanding of the cognitive contributions of the medial PFC beyond its canonical role in processes underlying social cognition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the introduction of new input devices, such as multi-touch surface displays, the Nintendo WiiMote, the Microsoft Kinect, and the Leap Motion sensor, among others, the field of Human-Computer Interaction (HCI) finds itself at an important crossroads that requires solving new challenges. Given the amount of three-dimensional (3D) data available today, 3D navigation plays an important role in 3D User Interfaces (3DUI). This dissertation deals with multi-touch, 3D navigation, and how users can explore 3D virtual worlds using a multi-touch, non-stereo, desktop display. The contributions of this dissertation include a feature-extraction algorithm for multi-touch displays (FETOUCH), a multi-touch and gyroscope interaction technique (GyroTouch), a theoretical model for multi-touch interaction using high-level Petri Nets (PeNTa), an algorithm to resolve ambiguities in the multi-touch gesture classification process (Yield), a proposed technique for navigational experiments (FaNS), a proposed gesture (Hold-and-Roll), and an experiment prototype for 3D navigation (3DNav). The verification experiment for 3DNav was conducted with 30 human-subjects of both genders. The experiment used the 3DNav prototype to present a pseudo-universe, where each user was required to find five objects using the multi-touch display and five objects using a game controller (GamePad). For the multi-touch display, 3DNav used a commercial library called GestureWorks in conjunction with Yield to resolve the ambiguity posed by the multiplicity of gestures reported by the initial classification. The experiment compared both devices. The task completion time with multi-touch was slightly shorter, but the difference was not statistically significant. The design of experiment also included an equation that determined the level of video game console expertise of the subjects, which was used to break down users into two groups: casual users and experienced users. The study found that experienced gamers performed significantly faster with the GamePad than casual users. When looking at the groups separately, casual gamers performed significantly better using the multi-touch display, compared to the GamePad. Additional results are found in this dissertation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Pico de Navas landslide was a large-magnitude rotational movement, affecting 50x106m3 of hard to soft rocks. The objectives of this study were: (1) to characterize the landslide in terms of geology, geomorphological features and geotechnical parameters; and (2) to obtain an adequate geomechanical model to comprehensively explain its rupture, considering topographic, hydro-geological and geomechanical conditions. The rupture surface crossed, from top to bottom: (a) more than 200 m of limestone and clay units of the Upper Cretaceous, affected by faults; and (b) the Albian unit of Utrillas facies composed of silty sand with clay (Kaolinite) of the Lower Cretaceous. This sand played an important role in the basal failure of the slide due to the influence of fine particles (silt and clay), which comprised on average more than 70% of the sand, and the high content presence of kaolinite (>40%) in some beds. Its geotechnical parameters are: unit weight (δ) = 19-23 KN/m3; friction angle (φ) = 13º-38º and cohesion (c) = 10-48 KN/m2. Its microstructure consists of accumulations of kaolinite crystals stuck to terrigenous grains, making clayey peds. We hypothesize that the presence of these aggregates was the internal cause of fluidification of this layer once wet. Besides the faulted structure of the massif, other conditioning factors of the movement were: the large load of the upper limestone layers; high water table levels; high water pore pressure; and the loss of strength due to wet conditions. The 3D simulation of the stability conditions concurs with our hypothesis. The landslide occurred in the Recent or Middle Holocene, certainly before at least 500 BC and possibly during a wet climate period. Today, it appears to be inactive. This study helps to understand the frequent slope instabilities all along the Iberian Range when facies Utrillas is present.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article considers the animating role that objects play in the theatre of Philippe Quesne and Vivarium Studio (France). The conventional role of object animation is often characterised by the performer manipulating objects and scenic material on the stage, asserting a control over the environment they are implicated in. In Quesne's theatre, this relationship is democratised. The theatrical apparatus, both materially and conceptually, is set up to enable the flow of animation to be interchangeable, affording an equal agency to the objects being used much as that of the performers. This theatre of animation is drawn through the framing concepts of displacement and humility. Displacement is considered as a compositional strategy that makes us aware of the volume of the stage space beyond the proscenium frame as a plane of composition. The introduction of large inflatable objects, real cars or large roles of fake snow foreground the objects material presence allows Quesne to play with moments of equilibrium, tipping, excess and absence. Humility is traced as a philosophy of objects that transcends the choice, handling and use of material items in Quesne's work. Simple objects take on a specific vibrancy because of how they give shape to the human participants on stage, animating moments of recognition that allows the human figure, its ethics, emotions and humour, to appear.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of spatial attention and part-whole configuration on recognition of repeated objects were investigated with behavioral and event-related potential (ERP) measures. Short-term repetition effects were measured for probe objects as a function of whether a preceding prime object was shown as an intact image or coarsely scrambled (split into two halves) and whether or not it had been attended during the prime display. In line with previous behavioral experiments, priming effects were observed from both intact and split primes for attended objects, but only from intact (repeated same-view) objects when they were unattended. These behavioral results were reflected in ERP waveforms at occipital-temporal locations as more negative-going deflections for repeated items in the time window between 220 and 300 ms after probe onset (N250r). Attended intact images showed generally more enhanced repetition effects than split ones. Unattended images showed repetition effects only when presented in an intact configuration, and this finding was limited to the right-hemisphere electrodes. Repetition effects in earlier (before 200 ms) time-windows were limited to attended conditions at occipito-temporal sites (N1), a component linked to the encoding of object structure, while repetition effects at central locations during the same time window (P150) were found only from objects repeated in the same intact configuration—both previously attended and unattended probe objects. The data indicate that view-generalization is mediated by a combination of analytic (part-based) representations and automatic view-dependent representations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Research in ubiquitous and pervasive technologies have made it possible to recognise activities of daily living through non-intrusive sensors. The data captured from these sensors are required to be classified using various machine learning or knowledge driven techniques to infer and recognise activities. The process of discovering the activities and activity-object patterns from the sensors tagged to objects as they are used is critical to recognising the activities. In this paper, we propose a topic model process of discovering activities and activity-object patterns from the interactions of low level state-change sensors. We also develop a recognition and segmentation algorithm to recognise activities and recognise activity boundaries. Experimental results we present validates our framework and shows it is comparable to existing approaches.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Na medida em que os produtos e os processos de criação são cada vez mais mediados digitalmente, existe uma reflexão recente acerca da relação entre as imagens e as ferramentas usadas para a sua produção. A relação natural e estreita entre a dimensão conceptual e a dimensão física abre a discussão ao nível da semântica e dos processos da projetação e manipulação das imagens, nas quais estão naturalmente incluídas as ferramentas CAD. Tendo o desenho um papel inequívoco e fundamental no exercício da projetação e da modelação 3D é pertinente perceber a relação e a articulação entre estas duas ferramentas. Reconhecendo o desenho como uma ferramenta de domínio físico capaz de expressar o pensamento que opera a transformação de concepções abstratas em concepções concretas, reconhecê-lo refletido na dimensão virtual através de um software CAD 3D não é trivial, já que este, na generalidade, é processado através de um pensamento cujo contexto é distante da materialidade. Metodologicamente, abordaremos esta questão procurando a verificação da hipótese através de uma proposta de exercício prático que procura avaliar o efeito que as imagens analógicas poderão ter sobre o reconhecimento e operatividade da ferramenta Blender num enquadramento académico. Pretende-se, pois, perceber como o desenho analógico pode integrar o processo de modelação 3D e qual a relação que mantém com quem elas opera. A articulação do desenho com as ferramentas de produção de design, especificamente CAD 3D, permitirá compreender na especialidade a articulação entre ferramentas de diferentes naturezas tanto no processo da projetação quanto na criação de artefactos visuais. Assim como poderá lançar a discussão acerca das estratégias pedagógicas de ensino do desenho e do 3D num curso de Design.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

O bin picking é um processo de grande interesse na indústria, uma vez que permite maior automatização, aumento da capacidade de produção e redução dos custos. Este tem vindo a evoluir bastante ao longo dos anos e essa evolução fez com que sistemas de perceção 3D começassem a ser implementados. Este trabalho tem como principal objetivo desenvolver um sistema de bin picking usando apenas perceção 3D. O sistema deve ser capaz de determinar a posição e orientação de objetos com diferentes formas e tamanhos, posicionados aleatoriamente numa superfície de trabalho. Os objetos utilizados para fazer os testes experimentais, são esferas, cilindros e prismas, uma vez que abrangem as formas geométricas existentes em muitos produtos submetidos a bin picking. Após a identi cação e seleção do objeto a apanhar, o manipulador deve autonomamente posicionar-se para fazer a aproximação e recolha do mesmo. A aquisição de dados é feita através de uma câmara Kinect. Dos dados recebidos apenas são trabalhados os referentes à profundidade, centrando-se assim este trabalho na análise e tratamento de nuvem de pontos. O sistema desenvolvido cumpre com os objetivos estabelecidos. Consegue localizar e apanhar objetos em várias posições e orientações. Além disso apresenta uma velocidade de processamento compatível com a aplicação em causa.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Visual recognition is a fundamental research topic in computer vision. This dissertation explores datasets, features, learning, and models used for visual recognition. In order to train visual models and evaluate different recognition algorithms, this dissertation develops an approach to collect object image datasets on web pages using an analysis of text around the image and of image appearance. This method exploits established online knowledge resources (Wikipedia pages for text; Flickr and Caltech data sets for images). The resources provide rich text and object appearance information. This dissertation describes results on two datasets. The first is Berg’s collection of 10 animal categories; on this dataset, we significantly outperform previous approaches. On an additional set of 5 categories, experimental results show the effectiveness of the method. Images are represented as features for visual recognition. This dissertation introduces a text-based image feature and demonstrates that it consistently improves performance on hard object classification problems. The feature is built using an auxiliary dataset of images annotated with tags, downloaded from the Internet. Image tags are noisy. The method obtains the text features of an unannotated image from the tags of its k-nearest neighbors in this auxiliary collection. A visual classifier presented with an object viewed under novel circumstances (say, a new viewing direction) must rely on its visual examples. This text feature may not change, because the auxiliary dataset likely contains a similar picture. While the tags associated with images are noisy, they are more stable when appearance changes. The performance of this feature is tested using PASCAL VOC 2006 and 2007 datasets. This feature performs well; it consistently improves the performance of visual object classifiers, and is particularly effective when the training dataset is small. With more and more collected training data, computational cost becomes a bottleneck, especially when training sophisticated classifiers such as kernelized SVM. This dissertation proposes a fast training algorithm called Stochastic Intersection Kernel Machine (SIKMA). This proposed training method will be useful for many vision problems, as it can produce a kernel classifier that is more accurate than a linear classifier, and can be trained on tens of thousands of examples in two minutes. It processes training examples one by one in a sequence, so memory cost is no longer the bottleneck to process large scale datasets. This dissertation applies this approach to train classifiers of Flickr groups with many group training examples. The resulting Flickr group prediction scores can be used to measure image similarity between two images. Experimental results on the Corel dataset and a PASCAL VOC dataset show the learned Flickr features perform better on image matching, retrieval, and classification than conventional visual features. Visual models are usually trained to best separate positive and negative training examples. However, when recognizing a large number of object categories, there may not be enough training examples for most objects, due to the intrinsic long-tailed distribution of objects in the real world. This dissertation proposes an approach to use comparative object similarity. The key insight is that, given a set of object categories which are similar and a set of categories which are dissimilar, a good object model should respond more strongly to examples from similar categories than to examples from dissimilar categories. This dissertation develops a regularized kernel machine algorithm to use this category dependent similarity regularization. Experiments on hundreds of categories show that our method can make significant improvement for categories with few or even no positive examples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study of ichthyio-plankton stages and its relations with the environment and other organisms is therefore crucial for a correct use of fishery resources. In this context, the extraction and the analysis of the content of the digestive tract, is a key method for the identification of the diet in early larval stages, the determination of the resources they rely on and possibly a comparison with the diet of other species. Additionally this approach could be useful in determination on occurrence of species competition. This technique is preceded by the analysis of morphometric data (Blackith & Reyment, 1971; Marcus, 1990), that is the acquisition of quantitative variables measured from the morphology of the object of study. They are linear distances, count, angles and ratios. The subsequent application of multivariate statistical methods, aims to quantify the changes in morphological measures between and within groups, relating them to the type and size of prey and evaluate if some changes appear in food choices along the larvae growth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis, we propose to infer pixel-level labelling in video by utilising only object category information, exploiting the intrinsic structure of video data. Our motivation is the observation that image-level labels are much more easily to be acquired than pixel-level labels, and it is natural to find a link between the image level recognition and pixel level classification in video data, which would transfer learned recognition models from one domain to the other one. To this end, this thesis proposes two domain adaptation approaches to adapt the deep convolutional neural network (CNN) image recognition model trained from labelled image data to the target domain exploiting both semantic evidence learned from CNN, and the intrinsic structures of unlabelled video data. Our proposed approaches explicitly model and compensate for the domain adaptation from the source domain to the target domain which in turn underpins a robust semantic object segmentation method for natural videos. We demonstrate the superior performance of our methods by presenting extensive evaluations on challenging datasets comparing with the state-of-the-art methods.