996 resultados para 320302 Medical Biochemistry - Carbohydrates
Resumo:
Circular disulfide-rich polypeptides were unknown a decade ago but over recent years a large family of such molecules has been discovered, which we now refer to as the cyclotides. They are typically about 30 amino acids in size, contain an N- to C-cyclised backbone and incorporate three disulfide bonds arranged in a cystine knot motif. In this motif, an embedded ring in the structure formed by two disulfide bonds and their connecting backbone segments is penetrated by the third disulfide bond. The combination of this knotted and strongly braced structure with a circular backbone renders the cyclotides impervious to enzymatic breakdown and makes them exceptionally stable. This article describes the discovery of the cyclotides in plants from the Rubiaceae and Violaceae families, their chemical synthesis, folding, structural characterisation, and biosynthetic origin. The cyclotides have a diverse range of biological applications, ranging from uterotonic action, to anti-HIV and neurotensin antagonism. Certain plants from which they are derived have a history of uses in native medicine, with activity being observed after oral ingestion of a tea made from the plants. This suggests the possibility that the cyclotides may be orally bioavailable. They therefore have a range of potential applications as a stable peptide framework.
Resumo:
Head-to-tail cyclic peptides have been reported to bind to multiple, unrelated classes of receptor with high affinity. They may therefore be considered to be privileged structures. This review outlines the strategies by which both macrocyclic cyclic peptides and cyclic dipeptides or diketopiperazines have been synthesised in combinatorial libraries. It also briefly outlines some of the biological applications of these molecules, thereby justifying their inclusion as privileged structures.
Resumo:
Background: Steatosis occurs in more than 50% of patients with chronic hepatitis C and is associated with increased hepatic fibrosis. In many of these patients the pathogenesis of steatosis appears to be the some as for patients with non-alcoholic fatty liver disease-that is, related to visceral adiposity and obesity. Methods: The effect of a three month weight reduction programme on liver biochemistry and metabolic parameters was examined in 19 subjects with steatosis and chronic hepatitis C. Paired liver biopsies were performed in 10 subjects, prior to and 3-6 months following the intervention, to determine the effect of weight loss on liver histology. Results: There was a mean weight loss of 5.9 (3.2) kg and a mean reduction in waist circumference of 9.0 (5.0) cm. In 16 of the 19 patients, serum alanine aminotransferase levels fell progressively with weight loss. Mean fasting insulin fell from 16 (7) to 11 (4) mmol/l (p
Resumo:
Patients with chronic or complex medical or psychiatric conditions are treated by many practitioners, including general practitioners (GPs). Formal liaison between primary and specialist is often assumed to offer benefits to patients The aim of this study was to assess the efficacy of formal liaison of GPs with specialist service providers on patient health outcomes, by conducting a systematic review of the published literature in MEDLINE, EMBASE, PsychINFO, CINAHL and Cochrane Library databases using the following search terms family physicians': synonyms of 'patient care planning', 'patient discharge' and 'patient care team'; and synonyms of 'randomised controlled trials'. Seven studies were identified, involving 963 subjects and 899 controls. most health outcomes were unchanged, although some physical and functional health outcomes were improved by formal liaison between GPs and specialist services, particularly among chronic mental illness patients. Some health outcomes worsened during the intervention. Patient retention rates within treatment programmes improved with GP involvement, as did patient satisfaction. Doctor (GP and specialist) behaviour changed, with reports of more rational use of resources and diagnostic tests, improved clinical skills, more frequent use of appropriate treatment strategies, and more frequent clinical behaviours designed to detect disease complications Cost effectiveness could not be determined. In conclusion, formal liaison between GPs and specialist services leaves most physical health outcomes unchanged, but improves functional outcomes in chronically mentally ill patients. It may confer modest long-term health benefits through improvements in patient concordance with treatment programmes and more effective clinical practice.
Resumo:
The primary sequence and three-dimensional structure of a novel peptide toxin isolated from the Australian funnel-web spider Hadronyche infensa sp. is reported. ACTX-HI:OB4219 contains 38 amino acids, including eight-cysteine residues that form four disulfide bonds. The connectivities of these disulfide bonds were previously unknown but have been unambiguously determined in this study. Three of these disulfide bonds are arranged in an inhibitor cystine-knot (ICK) motif, which is observed in a range of other disulfide-rich peptide toxins. The motif incorporates an embedded ring in the structure formed by two of the disulfides and their connecting backbone segments penetrated by a third disulfide bond. Using NMR spectroscopy, we determined that despite the isolation of a single native homologous product by RP-HPLC, ACTX-HI:OB4219 possesses two equally populated conformers in solution. These two conformers were determined to arise from cis/trans isomerization of the bond preceding Pro30. Full assignment of the NMR spectra for both conformers allowed for the calculation of their structures, revealing, the presence of a triple-stranded antiparallel sheet consistent with the inhibitor cystine-knot (ICK) motif.
Resumo:
NMR spectroscopy and simulated annealing calculations have been used to determine the three-dimensional structure of NaD1, a novel antifungal and insecticidal protein isolated from the flowers of Nicotiana alata. NaD1 is a basic, cysteine-rich protein of 47 residues and is the first example of a plant defensin from flowers to be characterized structurally. Its three-dimensional structure consists of an a-helix and a triple-stranded anti-parallel beta-sheet that are stabilized by four intramolecular disulfide bonds. NaD1 features all the characteristics of the cysteine-stabilized up motif that has been described for a variety of proteins of differing functions ranging from antibacterial insect defensins and ion channel-perturbing scorpion toxins to an elicitor of the sweet taste response. The protein is biologically active against insect pests, which makes it a potential candidate for use in crop protection. NaD1 shares 31% sequence identity with alfAFP, an antifungal protein from alfalfa that confers resistance to a fungal pathogen in transgenic potatoes. The structure of NaD1 was used to obtain a homology model of alfAFP, since NaD1 has the highest level of sequence identity with alfAFP of any structurally characterized antifungal defensin. The structures of NaD1 and alfAFP were used in conjunction with structure - activity data for the radish defensin Rs-AFP2 to provide an insight into structure-function relationships. In particular, a putative effector site was identified in the structure of NaD1 and in the corresponding homology model of alfAFP. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Circular proteins are a recently discovered phenomenon. They presumably evolved to confer advantages over ancestral linear proteins while maintaining the intrinsic biological functions of those proteins. In general, these advantages include a reduced sensitivity to proteolytic cleavage and enhanced stability. In one remarkable family of circular proteins, the cyclotides, the cyclic backbone is additionally braced by a knotted arrangement of disulfide bonds that confers additional stability and topological complexity upon the family. This article describes the discovery, structure, function and biosynthesis of the currently known circular proteins. The discovery of naturally occurring circular proteins in the past few years has been complemented by new chemical and biochemical methods to make synthetic circular proteins; these are also briefly described.
Resumo:
Predisposition to melanoma is genetically heterogeneous. Two high penetrance susceptibility genes, CDKN2A and CDK4, have so far been identified and mapping is ongoing to localize and identify others. With the advent of a catalogue of millions of potential DNA polymorphisms, attention is now also being focused on identification of genes that confer a more modest contribution to melanoma risk, such as those encoding proteins involved in pigmentation, DNA repair, cell growth and differentiation or detoxification of metabolites. One such pigmentation gene, MC1R, has not only been found to be a low penetrance melanoma gene but has also been shown to act as a genetic modifier of melanoma risk in individuals carrying CDKN2A mutations. Most recently, an environmental agent, ultraviolet radiation, has also been established as a modifier of melanoma risk in CDKN2A mutation carriers. Hence, melanoma is turning out to be an excellent paradigm for studying gene-gene and gene-environment interactions.
Resumo:
Cyclotides are a recently discovered family of disulfide rich proteins from plants that contain a circular protein backbone. They are exceptionally stable, as exemplified by their use in native medicine of the prototypic cyclotide kalata B1. The peptide retains uterotonic activity after the plant from which it is derived is boiled to make a medicinal tea. The circular backbone is thought to be in part responsible for the stability of the cyclotides, and to investigate its role in determining structure and biological activity, an acyclic derivative, des-(24-28)-kalata B1, was chemically synthesized and purified. This derivative has five residues removed from the 29-amino acid circular backbone of kalata B1 in a loop region corresponding to a processing site in the biosynthetic precursor protein. Two-dimensional NMR spectra of the peptide were recorded, assigned, and used to identify a series of distance, angle, and hydrogen bonding restraints. These were in turn used to determine a representative family of solution structures. Of particular interest was a determination of the structural similarities and differences between des-(2428)-kalata B1 and native kalata B1. Although the overall three-dimensional fold remains very similar to that of the native circular protein, removal of residues 24-28 of kalata B1 causes disruption of some structural features that are important to the overall stability. Furthermore, loss of hemolytic activity is associated with backbone truncation and linearization.
Resumo:
The principal constituent of cannabis, Delta(9)-tetrahydrocannabinol (THC), is moderately effective in treating nausea and vomiting, appetite loss, and acute and chronic pain. Oral THC (dronabinol) and the synthetic cannabinoid, nabilone, have been registered for medical use in the US and UK, but they have not been widely used because patients find it difficult to titrate doses of these drugs. Advocates for the medical use of cannabis argue that patients should be allowed to smoke cannabis to relieve these above-mentioned symptoms. Some US state governments have legislated to allow the medical prescription of cannabis, but the US federal government has tried to prevent patients from obtaining cannabis and threatened physicians who prescribe it with criminal prosecution or loss of their licence to practise. In the UK and Australia, committees of inquiry have recommended medical prescription (UK) and exemption from criminal prosecution (New South Wales, Australia), but governments have not accepted these recommendations. The Canadian government allows an exemption from criminal prosecution to patients with specified medical conditions. It has recently legislated to provide cannabis on medical prescription to registered patients, but this scheme so far has not been implemented. Some advocates argue that legalising cannabis is the only way to ensure that patients can use it for medical purposes. However, this would be contrary to international drug control treaties and is electorally unpopular. The best prospects for the medical use of cannabinoids lie in finding ways to deliver THC that do not involve smoking and in developing synthetic cannabinoids that produce therapeutic effects with a minimum of psychoactive effects. While awaiting these developments, patients with specified medical conditions could be given exemptions from criminal prosecution to grow cannabis for their own use, at their own risk.
Resumo:
Specific neuronal mRNAs are localized in dendrites, often concentrated in dendritic spines and spine synapses, where they are translated. The molecular mechanism of localization is mostly unknown. Here we have explored the roles of A2 response element (A2RE), a cis-acting signal for oligodendrocyte RNA trafficking, and its cognate trans-acting factor, heterogeneous nuclear ribonucleoprotein ( hnRNP) A2, in neurons. Fluorescently labeled chimeric RNAs containing A2RE were microinjected into hippocampal neurons, and RNA transport followed using confocal laser scanning microscopy. These RNA molecules, but not RNA lacking the A2RE sequence, were transported in granules to the distal neurites. hnRNP A2 protein was implicated as the cognate trans-acting factor: it was colocalized with RNA in cytoplasmic granules, and RNA trafficking in neurites was compromised by A2RE mutations that abrogate hnRNP A2 binding. Coinjection of antibodies to hnRNP A2 halved the number of trafficking cells, and treatment of neurons with antisense oligonucleotides also disrupted A2RE - RNA transport. Colchicine inhibited trafficking, whereas cells treated with cytochalasin were unaffected, implicating involvement of microtubules rather than microfilaments. A2RE-like sequences are found in a subset of dendritically localized mRNAs, which, together with these results, suggests that a molecular mechanism based on this cis-acting sequence may contribute to dendritic RNA localization.