997 resultados para 311-U1326C
Resumo:
The effect of dipolar cross correlation in 1H---1H nuclear Overhauser effect experiments is investigated by detailed calculation in an ABX spin system. It is found that in weakly coupled spin systems, the cross-correlation effects are limited to single-quantum transition probabilities and decrease in magnitude as ωτc increases. Strong coupling, however, mixes the states and the cross correlations affect the zero-quantum and double-quantum transition probabilities as well. The effect of cross correlation in steady-state and transient NOE experiments is studied as a function of strong coupling and ωτc. The results for steady-state NOE experiments are calculated analytically and those for transient NOE experiments are calculated numerically. The NOE values for the A and B spins have been calculated by assuming nonselective perturbation of all the transitions of the X spin. A significant effect of cross correlation is found in transient NOE experiments of weakly as well as strongly coupled spins when the multiplets are resolved. Cross correlation manifests itself largely as a multiplet effect in the transient NOE of weakly coupled spins for nonselective perturbation of all X transitions. This effect disappears for a measuring pulse of 90° or when the multiplets are not resolved. For steady-state experiments, the effect of cross correlation is analytically zero for weakly coupled spins and small for strongly coupled spins.
Resumo:
XVIII IUFRO World Congress, Ljubljana 1986.
Resumo:
Microwave irradiation, using a commercial microwave oven accelerates (in 10–15 min) the three-step ortho ester Claisen rearrangement of allyl and propynyl alcohols in dry DMF in open Erlenmeyer flasks.
Resumo:
Reactive oxygen species (ROS) have important functions in plant stress responses and development. In plants, ozone and pathogen infection induce an extracellular oxidative burst that is involved in the regulation of cell death. However, very little is known about how plants can perceive ROS and regulate the initiation and the containment of cell death. We have identified an Arabidopsis thaliana protein, GRIM REAPER (GRI), that is involved in the regulation of cell death induced by extracellular ROS. Plants with an insertion in GRI display an ozone-sensitive phenotype. GRI is an Arabidopsis ortholog of the tobacco flower-specific Stig1 gene. The GRI protein appears to be processed in leaves with a release of an N-terminal fragment of the protein. Infiltration of the N-terminal fragment of the GRI protein into leaves caused cell death in a superoxide-and salicylic acid-dependent manner. Analysis of the extracellular GRI protein yields information on how plants can initiate ROS-induced cell death during stress response and development.
Resumo:
The optimum values of the solution parameters of a multiparameter integral free-energy function have been determined using experimental data from the Ga-Sb system. The equation is represented as DELTAG(xs) = x(1 - x)[(1 - x)(a1 + a2T + a3T ln T) + x(a4 + a5T + a6T ln T) + x(1 - x)(a7 + a8T + a9xT)].The integral and the corresponding partial form of the free energy function have been found to be of use when interpreting the high temperature thermodynamic data, atomic interactions and phase equilibria in the Ga-Sb system.
Resumo:
One of the fundamental questions concerning homologous recombination is how RecA or its homologues recognize several DNA sequences with high affinity and catalyze all the diverse biological activities. In this study, we show that the extent of single-stranded DNA binding and strand exchange (SE) promoted by mycobacterial RecA proteins with DNA substrates having various degrees of GC content was comparable with that observed for Escherichia coli RecA. However, the rate and extent of SE promoted by these recombinases showed a strong negative correlation with increasing amounts of sequence divergence embedded at random across the length of the donor strand. Conversely, a positive correlation was seen between SE efficiency and the degree of sequence divergence in the recipient duplex DNA. The extent of heteroduplex formation was not significantly affected when both the pairing partners contained various degrees of sequence divergence, although there was a moderate decrease in the case of mycobacterial RecA proteins with substrates containing larger amounts of sequence divergence. Whereas a high GC content had no discernible effect on E. coli RecA coprotease activity, a negative correlation was apparent between mycobacterial RecA proteins and GC content. We further show clear differences in the extent of SE promoted by E. coli and mycobacterial RecA proteins in the presence of a wide range of ATP:ADP ratios. Taken together, our findings disclose the existence of functional diversity among E. coli and mycobacterial RecA nucleoprotein filaments, and the milieu of sequence divergence (i.e., in the donor or recipient) exerts differential effects on heteroduplex formation, which has implications for the emergence of new genetic variants.
Resumo:
We introduce the inverse annihilation and creation operators a-1 and a(dagger-1) by their actions on the number states. We show that the squeezed vacuum exp(1/2xia(dagger2)]\0] and squeezed first number state exp[1.2xia(dagger2)]\n = 1] are respectively the eigenstates of the operators (a(dagger-1)a) and (aa(dagger-1)) with the eigenvalue xi.
Resumo:
The developing seeds of Actinodaphne hookeri were investigated to delineate their ability to synthesize large amounts of trilaurin. Until 88 days after flowering the embryos contained 71% neutral lipids (NL) and 29% phospholipids (PL) and both these components contained C-16:0, C-18:0, C-18:2, and C-18:3 as the major fatty acids (FA). At 102 days after flowering the seeds began to accumulate triacylglycerols (TAG) and to synthesize lauric acid (C-12:0). By 165 days after flowering, when the seeds were mature, they contained about 99% NL and 1% FL. At this stage the TAG contained exclusively C-12:0, while the PL consisted of long-chain fatty acids (LCFA) only. Leaf lipids in contrast did not contain any C-12:0. Experiments on [1-C-14]acetate incorporation into developing seed slices showed that at 88 days after flowering only 4% of the label was in TAG, 1% in diacylglycerols (DAG), and 87% in FL. One hundred two days after flowering seeds incorporated only 2% of the label into TAG, 30% into DAG, and 64% into FL. In contrast at 114 days after flowering 71% of the label was incorporated into TAG, 25% into DAG, and only 2% into FL. Analysis of labeled FA revealed that up to 102 days after flowering it was incorporated only into LCFA, whereas at 114 days after flowering it was incorporated exclusively into C-12:0. Furthermore, 67% of the label in PL at 114 days after flowering was found to be dilaurylglycerophosphate. Analysis of the label in DAG at this stage showed that it was essentially in dilaurin species. These observations indicate the induction of enzymes of Kennedy pathway for the specific synthesis of trilaurin at about 114 days after flowering, Homogenates of seeds (114 days after flowering) incubated with labeled FA in the presence of glycerol-3-phosphate and coenzymes A and ATP incorporated 84% of C-12:0 and 61% of C-14:0, but not C-16:0, C-18:2, and C-18:3, into TAG. In contrast the LCFA were incorporated preferentially into FL. It is concluded that, between 102 and 114 days after flowering, a switch occurs in A. hookeri for the synthesis of C-12:0 and trilaurin which is tissue specific. Since the seed synthesizes exclusively C-12:0 at 114 days after flowering onwards and incorporates specifically into TAG, this system appears to be ideal for identifying the enzymes responsible for medium-chain fatty acid as well as trilaurin synthesis and for exploiting them for genetic engineering. (C) 1994 Academic Press, Inc.
Resumo:
Scaled Particle Theory (SPT) has been applied to predict the total free energies of micellization of ionic as well as nonionic micellar systems containing an aryl ring. A modification of the previously developed model has been made, proposing a two-zone model of micellar core which corroborates with the structural information available for such systems. The results are in good agreement with experimental data and also confirm the dictating role of cavity forming free energies for such systems
Resumo:
Amorphous conducting carbon films are prepared by plasma assisted chemical vapour deposition and their d.c. conductivity (similar to 100 Scm(-1)) is studied from 300K down to 4.2K. The films were irradiated by high energy ion beam(I+13, 170 MeV) with a dose of 10(13) ions/cm(2). As a result a marked decrease in conductivity by two to three orders in magnitude was observed. The structural changes and the defects in the films caused by ion irradiation are studied using photoluminescence, persistent photoconductivity, and ESR spectroscopy.
Resumo:
A method based on the minimal-spanning tree is extended to a collection of points in three dimensions. Two parameters, the average edge length and its standard deviation characterize the disorder. The structural phase diagram for a monatomic system of particles and the characteristic values for the uniform random distribution of points have been obtained. The method is applied to hard spheres and Lennard-Jones systems. These systems occupy distinct regions in the structural phase diagram. The structure of the Lennard-Jones system approaches that of the defective close-packed arrangements at low temperatures whereas in the liquid regime, it deviates from the close-packed configuration.
Resumo:
AgI-based composites with a general formula AgI---MxOy (MxOy = ZrO2, CeO2, Fe2O3, Sm2O3, MoO3 and WO3) have been studied in detail. The enhancement in the conductivity of AgI and its unusual thermal stability and amorphization are explained assuming a chemical interaction at the oxide-AgI interface.