957 resultados para 2D cutting and packing
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The building budgeting quickly and accurately is a challenge faced by the companies in the sector. The cost estimation process is performed from the quantity takeoff and this process of quantification, historically, through the analysis of the project, scope of work and project information contained in 2D design, text files and spreadsheets. This method, in many cases, present itself flawed, influencing the making management decisions, once it is closely coupled to time and cost management. In this scenario, this work intends to make a critical analysis of conventional process of quantity takeoff, from the quantification through 2D designs, and with the use of the software Autodesk Revit 2016, which uses the concepts of building information modeling for automated quantity takeoff of 3D model construction. It is noted that the 3D modeling process should be aligned with the goals of budgeting. The use of BIM technology programs provides several benefits compared to traditional quantity takeoff process, representing gains in productivity, transparency and assertiveness
Resumo:
A/J and 129P3/J mouse strains have different susceptibilities to dental fluorosis due to their genetic backgrounds. They also differ with respect to several features of fluoride (F) metabolism and metabolic handling of water. This study was done to determine whether differences in F metabolism could be explained by diversities in the profile of protein expression in kidneys. Weanling, male A/J mice (susceptible to dental fluorosis, n = 18) and 129P3/J mice (resistant, n = 18) were housed in pairs and assigned to three groups given low-F food and drinking water containing 0, 10 or 50 ppm [F] for 7 weeks. Renal proteome profiles were examined using 2D-PAGE and LC-MS/MS. Quantitative intensity analysis detected between A/J and 129P3/J strains 122, 126 and 134 spots differentially expressed in the groups receiving 0, 10 and 50 ppmF, respectively. From these, 25, 30 and 32, respectively, were successfully identified. Most of the proteins were related to metabolic and cellular processes, followed by response to stimuli, development and regulation of cellular processes. In F-treated groups, PDZK-1, a protein involved in the regulation of renal tubular reabsorption capacity was down-modulated in the kidney of 129P3/J mice. A/J and 129P3/J mice exhibited 11 and 3 exclusive proteins, respectively, regardless of F exposure. In conclusion, proteomic analysis was able to identify proteins potentially involved in metabolic handling of F and water that are differentially expressed or even not expressed in the strains evaluated. This can contribute to understanding the molecular mechanisms underlying genetic susceptibility to dental fluorosis, by indicating key-proteins that should be better addressed in future studies
Resumo:
Previous studies have demonstrated that long chain fatty acids influence fibroblast function at sub-lethal concentrations. This study is the first to assess the effects of oleic, linoleic or palmitic acids on protein expression of fibroblasts, as determined by standard proteomic techniques. The fatty acids were not cytotoxic at the concentration used in this work as assessed by membrane integrity, DNA fragmentation and the MTT assay but significantly increased cell proliferation. Subsequently, a proteomic analysis was performed using two dimensional difference gel electrophoresis (2D-DIGE) and MS based identification. Cells treated with 50 μM oleic, linoleic or palmitic acid for 24 h were associated with 24, 22, 16 spots differentially expressed, respectively. Among the identified proteins, α-enolase and far upstream element binding protein 1 (FBP-1) are of importance due to their function in fibroblast-associated diseases. However, modulation of α-enolase and FBP-1 expression by fatty acids was not validated by the Western blot technique.
Resumo:
The most important property of austenitic stainless steels is corrosion resistance. In these steels, the transition between paramagnetic and ferromagnetic conditions occurs at low temperatures. Therefore, the use of austenitic stainless steels in conditions in which ferromagnetism absence is important can be considered. On the other hand, the formation of strain-induced martensite is detected when austenitic stainless steels are deformed as well as machined. The strain-induced martensite formed especially in the machining process is not uniform through the chip and its formation can also be related to the Md temperature. Therefore, both the temperature distribution and the gradient during the cutting and chip formation are important to identify regions in which martensite formation is propitiated. The main objective here is evaluate the strain-induced martensite formation throughout machining by observing microstructural features and comparing these to thermal results obtained through finite element method analysis. Results show that thermal analysis can give support to the martensite identified in the microstructural analysis.
Resumo:
[EN]We present a new strategy, based on the meccano method [1, 2, 3], to construct a T-spline parameterization of 2D geometries for the application of isogeometric analysis. The proposed method only demands a boundary representation of the geometry as input data. The algorithm obtains, as a result, high quality parametric transformation between 2D objects and the parametric domain, the unit square. The key of the method lies in defining an isomorphic transformation between the parametric and physical T-mesh finding the optimal position of the interior nodes by applying a new T-mesh untangling and smoothing procedure. Bivariate T-spline representation is calculated by imposing the interpolation conditions on points sited both on the interior and on the boundary of the geometry…
Resumo:
3D video-fluoroscopy is an accurate but cumbersome technique to estimate natural or prosthetic human joint kinematics. This dissertation proposes innovative methodologies to improve the 3D fluoroscopic analysis reliability and usability. Being based on direct radiographic imaging of the joint, and avoiding soft tissue artefact that limits the accuracy of skin marker based techniques, the fluoroscopic analysis has a potential accuracy of the order of mm/deg or better. It can provide fundamental informations for clinical and methodological applications, but, notwithstanding the number of methodological protocols proposed in the literature, time consuming user interaction is exploited to obtain consistent results. The user-dependency prevented a reliable quantification of the actual accuracy and precision of the methods, and, consequently, slowed down the translation to the clinical practice. The objective of the present work was to speed up this process introducing methodological improvements in the analysis. In the thesis, the fluoroscopic analysis was characterized in depth, in order to evaluate its pros and cons, and to provide reliable solutions to overcome its limitations. To this aim, an analytical approach was followed. The major sources of error were isolated with in-silico preliminary studies as: (a) geometric distortion and calibration errors, (b) 2D images and 3D models resolutions, (c) incorrect contour extraction, (d) bone model symmetries, (e) optimization algorithm limitations, (f) user errors. The effect of each criticality was quantified, and verified with an in-vivo preliminary study on the elbow joint. The dominant source of error was identified in the limited extent of the convergence domain for the local optimization algorithms, which forced the user to manually specify the starting pose for the estimating process. To solve this problem, two different approaches were followed: to increase the optimal pose convergence basin, the local approach used sequential alignments of the 6 degrees of freedom in order of sensitivity, or a geometrical feature-based estimation of the initial conditions for the optimization; the global approach used an unsupervised memetic algorithm to optimally explore the search domain. The performances of the technique were evaluated with a series of in-silico studies and validated in-vitro with a phantom based comparison with a radiostereometric gold-standard. The accuracy of the method is joint-dependent, and for the intact knee joint, the new unsupervised algorithm guaranteed a maximum error lower than 0.5 mm for in-plane translations, 10 mm for out-of-plane translation, and of 3 deg for rotations in a mono-planar setup; and lower than 0.5 mm for translations and 1 deg for rotations in a bi-planar setups. The bi-planar setup is best suited when accurate results are needed, such as for methodological research studies. The mono-planar analysis may be enough for clinical application when the analysis time and cost may be an issue. A further reduction of the user interaction was obtained for prosthetic joints kinematics. A mixed region-growing and level-set segmentation method was proposed and halved the analysis time, delegating the computational burden to the machine. In-silico and in-vivo studies demonstrated that the reliability of the new semiautomatic method was comparable to a user defined manual gold-standard. The improved fluoroscopic analysis was finally applied to a first in-vivo methodological study on the foot kinematics. Preliminary evaluations showed that the presented methodology represents a feasible gold-standard for the validation of skin marker based foot kinematics protocols.
Resumo:
Il lavoro di Elisa Tosi Brandi riguarda il mestiere del sarto nel basso Medioevo e si sviluppa utilizzando due prospettive differenti. Da un lato, infatti, si è deciso di seguire una tradizione di studi oramai consolidata, che privilegia l’indagine degli aspetti economici e politici, dall’altro si è scelto di non trascurare la storia dei prodotti degli artigiani. L’approccio utilizzato in questa tesi tiene insieme entrambe le prospettive di ricerca, tentando dunque di indagare i produttori e i prodotti così come le fasi e i metodi di lavoro. Ciò senza ignorare, da un lato, indagini di tipo politico, economico e sociale, poiché tali oggetti sono lo specchio della società che li ha ideati e creati e da cui non si può prescindere e, dall’altro, indagini di tipo tecnico, poiché gli oggetti sono rivelatori del complesso patrimonio di conoscenze artigianali. Partendo dal caso di studio della Società dei sarti della città di Bologna, la tesi di Elisa Tosi Brandi ricostruisce questo mestiere confrontando tra loro fonti inedite (statuti corporativi, matricole, estimi) e studi effettuati su altre aree italiane. La ricca documentazione conservata ha consentito di mettere in luce l’organizzazione di questo lavoro, di collocare abitazioni e botteghe nell’area del mercato e nel più ampio tessuto cittadino, di individuare i percorsi commerciali e di approvvigionamento. L’ultima parte della tesi offre l’analisi di alcune fonti materiali al fine di ricostruire le tecniche sartoriali medievali intrecciando tutte le fonti consultate: dai documenti scritti si passa pertanto agli abiti che offrono informazioni dirette sulle tecniche di taglio ed assemblaggio.
Resumo:
In dieser Arbeit wurde eine neue Methode zur asymmetrischen Substitution der K-Regionen von Pyren entwickelt, auf welcher das Design und die Synthese von neuartigen, Pyren-basierten funktionalen Materialien beruht. Eine Vielzahl von Substitutionsmustern konnte erfolgreich realisiert werden um die Eigenschaften entsprechend dem Verwendungszweck anzupassen. Der polyzyklische aromatische Kohlenwasserstoff (PAK) Pyren setzt sich aus vier Benzolringen in Form einer planaren Raute mit zwei gegenüberliegenden K-Regionen zusammen. Der synthetische Schlüsselschritt dieser Arbeit ist die chemische Transformation der einen K-Region zu einem α-Diketon und der darauffolgenden selektiven Bromierung der zweiten K-Region. Dieser asymmetrisch funktionalisierte Baustein zeichnet sich durch zwei funktionelle Gruppen mit orthogonaler Reaktivität aus und erweitert dadurch das Arsenal der etablierten Pyren Chemie um eine vielseitig einsetzbare Methode. Aufbauend auf diesem synthetischen Zugang wurden fünf wesentliche Konzepte auf dem Weg zu neuen, von Pyren abgeleiteten Materialen verfolgt: (i) Asymmterische Substitution mit elektronenziehenden versus -schiebenden Gruppen. (ii) Darstellung von Pyrenocyaninen durch Anbindung von Pyren mit einer der K-Regionen an das Phthalocyanin Gerüst zur Ausdehnung des π-Systems. (iii) Einführung von Thiophen an die K-Region um halbleitende Eigenschaften zu erhalten. (iv) Symmetrische Annullierung von PAKs wie Benzodithiophen und Phenanthren an beide K Regionen für cove-reiche und dadurch nicht-planare Strukturen. (v) Verwendung des K-Region-funktionalisierten Pyrens als Synthesebaustein für das Peri-Pentacen. Neben der Synthese wurde die Selbstorganisation in der Festphase und an der flüssig/fest Grenzfläche mittels zweidimensionaler Weitwinkel-Röntgenstreuung (2D WAXS) bzw. Rastertunnelmikroskopie (STM) untersucht. Die halbleitenden Eigenschaften wurden in organischen Feld-Effekt Transistoren (OFETs) charakterisiert.
Resumo:
OBJECTIVES: To develop a minimally destructive technique for removing the smear layer produced by cutting and polishing specimens of dentine prepared for use in experimental studies, e.g. on occlusion of dentinal tubules by oral health products. The aim was to avoid the damage caused by conventional techniques utilising short exposures to solutions with very low pH. METHODS: Two acetate buffers, pH 5.5, containing different concentrations of calcium and phosphate, with -log(ion activity product with respect to hydroxyapatite) (pI(HA)) of 55 or 56, were tested on slices of dentine using scanning electron microscopy (SEM). RESULTS: A solution which, from previous work, was slightly undersaturated with respect to dentine mineral, with a pI(HA) of 56, was found to remove smear layers produced by cutting and/or polishing after 15 min. However, to reliably remove debris occluding the tubules an exposure time of 2h, followed by brief ultrasonication, was necessary. After 2h treatment with this buffer, only a small amount of demineralization of the surface was detectable by SEM, while calcium and phosphorus were detectable by X-ray dispersive spectroscopy. CONCLUSION: It is possible to remove smear layers, and to open dentinal tubules, by a reasonably short exposure to an acidic buffer which is undersaturated with respect to dentine mineral.
Resumo:
Understanding large software systems is a challenging task, and to support it many approaches have been developed. Often, the result of these approaches categorize existing entities into new groups or associates them with mutually exclusive properties. In this paper we present the Distribution Map as a generic technique to visualize and analyze this type of result. Our technique is based on the notion of focus, which shows whether a property is well-encapsulated or cross-cutting, and the notion of spread, which shows whether the property is present in several parts of the system. We present a basic visualization and complement it with measurements that quantify focus and spread. To validate our technique we show evidence of applying it on the result sets of different analysis approaches. As a conclusion we propose that the Distribution Map technique should belong to any reverse engineering toolkit.
Resumo:
Today electronic portal imaging devices (EPID's) are used primarily to verify patient positioning. They have, however, also the potential as 2D-dosimeters and could be used as such for transit dosimetry or dose reconstruction. It has been proven that such devices, especially liquid filled ionization chambers, have a stable dose response relationship which can be described in terms of the physical properties of the EPID and the pulsed linac radiation. For absolute dosimetry however, an accurate method of calibration to an absolute dose is needed. In this work, we concentrate on calibration against dose in a homogeneous water phantom. Using a Monte Carlo model of the detector we calculated dose spread kernels in units of absolute dose per incident energy fluence and compared them to calculated dose spread kernels in water at different depths. The energy of the incident pencil beams varied between 0.5 and 18 MeV. At the depth of dose maximum in water for a 6 MV beam (1.5 cm) and for a 18 MV beam (3.0 cm) we observed large absolute differences between water and detector dose above an incident energy of 4 MeV but only small relative differences in the most frequent energy range of the beam energy spectra. It is shown that for a 6 MV beam the absolute reference dose measured at 1.5 cm water depth differs from the absolute detector dose by 3.8%. At depth 1.2 cm in water, however, the relative dose differences are almost constant between 2 and 6 MeV. The effects of changes in the energy spectrum of the beam on the dose responses in water and in the detector are also investigated. We show that differences larger than 2% can occur for different beam qualities of the incident photon beam behind water slabs of different thicknesses. It is therefore concluded that for high-precision dosimetry such effects have to be taken into account. Nevertheless, the precise information about the dose response of the detector provided in this Monte Carlo study forms the basis of extracting directly the basic radiometric quantities photon fluence and photon energy fluence from the detector's signal using a deconvolution algorithm. The results are therefore promising for future application in absolute transit dosimetry and absolute dose reconstruction.
Resumo:
OBJECTIVE: The standard technique of two-dimensional intra-arterial digital subtraction angiography (2D-DSA) for the imaging of experimental rabbit aneurysms is invasive and has considerable surgical risks. Therefore, minimally invasive techniques ideally providing three-dimensional imaging for intervention planning and follow-up are needed. This study evaluates the feasibility and quality of three-dimensional 3-T magnetic resonance angiography (3D-3T-MRA) and compares 3D-3T-MRA with 2D-DSA in experimental aneurysms in the rabbit. METHOD: Three microsurgically created aneurysms in three rabbits were evaluated using 2D-DSA and 3D-3T-MRA. Imaging of the aneurysms was performed 2 weeks after creation using 2D-DSA and contrast-enhanced (CE) MRA. Measurements included aneurysm dome (length and width) and aneurysm neck. Aneurysm volumes were determined using CE-MRA. RESULTS: The measurements of the aneurysms' dimensions and the evaluation of vicinity vessels with both techniques showed a good correlation. The mean aneurysm length, aneurysm width and neck width measured with DSA (6.9, 4.1 and 2.8 mm, respectively) correlated with the measurements performed in 3D-3T-MRA (6.9, 4 and 2.5 mm, respectively). The mean aneurysm volumes measured with CE-MRA was 46.7 mm(3). CONCLUSION: 3D-3T CE-MRA is feasible and less invasive and is a safer imaging alternative to DSA for experimental aneurysm. Additionally, aneurysm technique this precise offers the possibility of repetitive 3D aneurysm volumetry for long-term follow-up studies after endovascular aneurysm occlusion.
Resumo:
Background: The aim of this study was to evaluate the validity and the inter- and intra-examiner reliability of panoramic-radiograph-driven findings of different maxillary sinus anatomic variations and pathologies, which had initially been prediagnosed by cone beam computed tomography (CBCT). Methods: After pairs of two-dimensional (2D) panoramic and three-dimensional (3D) CBCT images of patients having received treatment at the outpatient department had been screened, the predefinition of 54 selected maxillary sinus conditions was initially performed on CBCT images by two blinded consultants individually using a questionnaire that defined ten different clinically relevant findings. Using the identic questionnaire, these consultants performed the evaluation of the panoramic radiographs at a later time point. The results were analyzed for inter-imaging differences in the evaluation of the maxillary sinus between 2D and 3D imaging methods. Additionally, two resident groups (first year and last year of training) performed two diagnostic runs of the panoramic radiographs and results were analyzed for inter- and intra-observer reliability. Results: There is a moderate risk for false diagnosis of findings of the maxillary sinus if only panoramic radiography is used. Based on the ten predefined conditions, solely maxillary bone cysts penetrating into the sinus were frequently detected differently comparing 2D to 3D diagnostics. Additionally, on panoramic radiographs, the inter-observer comparison demonstrated that basal septa were significantly often rated differently and the intra-observer comparison showed a significant lack in reliability in detecting maxillary bone cysts penetrating into the sinus. Conclusions: Panoramic radiography provides the most information on the maxillary sinus, and it may be an adequate imaging method. However, particular findings of the maxillary sinus in panoramic imaging may be based on a rather examiner-dependent assessment. Therefore, a persistent and precise evaluation of specific conditions of the maxillary sinus may only be possible using CBCT because it provides additional information compared to panoramic radiography. This might be relevant for consecutive surgical procedures; consequently, we recommend CBCT if a precise preoperative evaluation is mandatory. However, higher radiation dose and costs of 3D imaging need to be considered. Keywords: Panoramic radiography; Cone beam computed tomography; Maxillary sinus; Inter-imaging method differences; Inter-examiner reliability; Intra-examiner reliability
Resumo:
BACKGROUND Preterm infants having immature lungs often require respiratory support, potentially leading to bronchopulmonary dysplasia (BPD). Conventional BPD rodent models based on mechanical ventilation (MV) present outcome measured at the end of the ventilation period. A reversible intubation and ventilation model in newborn rats recently allowed discovering that different sets of genes modified their expression related to time after MV. In a newborn rat model, the expression profile 48 h after MV was analyzed with gene arrays to detect potentially interesting candidates with an impact on BPD development. METHODS Rat pups were injected P4-5 with 2 mg/kg lipopolysaccharide (LPS). One day later, MV with 21 or 60% oxygen was applied during 6 h. Animals were sacrified 48 h after end of ventilation. Affymetrix gene arrays assessed the total gene expression profile in lung tissue. RESULTS In fully treated animals (LPS + MV + 60% O(2)) vs. controls, 271 genes changed expression significantly. All modified genes could be classified in six pathways: tissue remodeling/wound repair, immune system and inflammatory response, hematopoiesis, vasodilatation, and oxidative stress. Major alterations were found in the MMP and complement system. CONCLUSION MMPs and complement factors play a central role in several of the pathways identified and may represent interesting targets for BPD treatment/prevention.Bronchopulmonary dysplasia (BPD) is a chronic lung disease occurring in ~30% of preterm infants born less than 30 wk of gestation (1). Its main risk factors include lung immaturity due to preterm delivery, mechanical ventilation (MV), oxygen toxicity, chorioamnionitis, and sepsis. The main feature is an arrest of alveolar and capillary formation (2). Models trying to decipher genes involved in the pathophysiology of BPD are mainly based on MV and oxygen application to young mammals with immature lungs of different species (3). In newborn rodent models, analyses of lung structure and gene and protein expression are performed for practical reasons directly at the end of MV (4,5,6). However, later appearing changes of gene expression might also have an impact on lung development and the evolution towards BPD and cannot be discovered by such models. Recently, we developed a newborn rat model of MV using an atraumatic (orotracheal) intubation technique that allows the weaning of the newborn animal off anesthesia and MV, the extubation to spontaneous breathing, and therefore allows the evaluation of effects of MV after a ventilation-free period of recovery (7). Indeed, applying this concept of atraumatic intubation by direct laryngoscopy, we recently were able to show significant differences between gene expression changes appearing directly after MV compared to those measured after a ventilation-free interval of 48 h. Immediately after MV, inflammation-related genes showed a transitory modified expression, while another set of more structurally related genes changed their expression only after a delay of 2 d (7). Lung structure, analyzed by conventional 2D histology and also by 3D reconstruction using synchrotron x-ray tomographic microscopy revealed, 48 h after end of MV, a reduced complexity of lung architecture compared to the nonventilated rat lungs, similar to the typical findings in BPD. To extend these observations about late gene expression modifications, we performed with a similar model a full gene expression profile of lung tissue 48 h after the end of MV with either room air or 60% oxygen. Essentially, we measured changes in the expression of genes related to the MMPs and complement system which played a role in many of the six identified mostly affected pathways.