749 resultados para 2004-07-BS


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The information preservation (IP) method and the direct simulation Monte Carlo (DSMC) method are used to simulate the gas flows between the write/read head and the platter of the disk drive (the slider bearing problem). The results of both methods are in good agreement with numerical solution of the Reynolds equation in the cases studied. However, the DSMC method owing to the problem of large sample size demand and the difficulty in regulating boundary conditions at the inlet and outlet was able to simulate only short bearings, while IP simulates the bearing of authentic length ~1000 m ? and can provide more detailed flow information.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

At the shock velocity range of 7~9km/s, the variations of electron density behind strong normal shock waves are measured in a low-density shock tube by using the Langmuir electrostatic probe technique. The electron temperature, calculated based on Park’s three-temperature model, is used in interpreting the probe current data. The peak electron densities determined in the present experiment are shown to be in a good agreement with those predicted by Lin’s calculation. The experimentally obtained ratios of the characteristic ionization distance to the mean free path of freestream ahead of the shock wave are found to be in a good agreement with the existing experiments and Park’s calculation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

New methods of surface modification of transparent silicone substrate were developed, and a new set of cell culture devices that provide homogeneous substrate strain was designed. Using the new device, effects of cyclic substrate strain on bone marrow mesenchymal stem cells(MSCs) were studied. It was found that cyclic strain influenced proliferation and differentiation of bone marrow MSCs in different ways.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

报道了关于不相溶流体层间界面波演化规律的数值模拟研究及结果,重点考察了重力条件对界面波演化特性的影响。考虑在深度方向无限扩展的互不相容的两个流体层,上层流体比下层的轻,但比下层的运动速度快;两层流体间的界面上存在正弦波形的初始扰动,并随流体流动而不断变化。本文采用Level Set方法来实现对运动的相界面的追踪,用有限差分法来离散控制方程组。为了提高数值算法的稳定性,采用三阶的Runge-Kutta法来离散时间导数,而采用五阶的WENO(Weighted Essentially Non-oscillatory)格式来离散一阶对流输运项,并用压力修正投影法(Pressure Correction Projection Method)来实现离散控制方程组的求解。为了提高对复杂非稳态过程的解的准确度,采用了嵌套的三层迭代循环。本文对一系列工况条件下的界面波演化过程进行了计算;除了研究重力的作用之外,还考察了流体密度、粘性、表面张力、初始界面波频率、振幅及波数对界面波演化特性的影响。其中,上下流体层的最大密度比和粘性比可达3000/1,而重力加速度在0~5g0(g0=9.8m/s^2)之间变化,上下流体层间的最大速度差为8m/s。研究结果表明,随着重力、流体密度比、流体粘性比及表面张力的增加,界面波的演化受到不同程度的抑制,而界面波的传播速度也与重力及流体的密度、粘性和表面张力等因素相关。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

针对我国返回式卫星搭载实验条件,我们研制了一套池沸腾实验装置初样(包括液池、壁温自动反馈控制系统等)和地面实验配套系统,以研究地面常重力和空间微重力条件下的过冷池沸腾传热规律,着重研究核态沸腾、临界热流密度和双模态过度沸腾等。本文采用恒流电源加热、恒压电源加热和壁温自动反馈控制等三种加热方式,实验研究了地面常重力环境中池沸腾现象及其传热规律。实验结果证明该装置能满足空间搭载实验的要求,实验结果具有良好的重复性。关于稳定双模态过渡沸腾,本文研究发现,在过冷条件下起其表现和文献报道的饱和条件时具有明显的差异,沸腾特征曲线具有一明显的极小值,其位置紧邻临界热负荷点。本文还对此进行了初步的理论探讨。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In order to capture shock waves and contact discontinuities in the field and easy to program with parallel computation a new algorithm is developed to solve the N-S equations for simulation of R-M instability problems. The method with group velocity control is used to suppress numerical oscillations, and an adaptive non-uniform mesh is used to get fine resolution. Numerical results for cylindrical shock-cylindrical interface interaction with a shock Mach number Ms=1.2 and Atwood number A=0.818, 0.961, 0.980 (the interior density of the interface/outer density p(1)/p(2) = 10, 50, 100, respectively), and for the planar shock-spherical interface interaction with Ms=1.2 and p(1)/p(2) = 14.28are presented. The effect of Atwood number and multi-mode initial perturbation on the R-M instability are studied. Multi-collisions of the reflected shock with the interface is a main reason of nonlinear development of the interface instability and formation of the spike-bubble structures In simulation with double mode perturbation vortex merging and second instability are found. After second instability the small vortex structures near the interface produced. It is important factor for turbulent mixing.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A side-wall compression scramjet model with different combustor geometries has been tested in a propulsion tunnel that typically provides the testing flow with Mach number of 5.8, total temperature of 1800K, total pressure of 4.5MPa and mass flow rate of 4kg/s. This kerosene-fueled scramjet model consists of a side-wall compression inlet, a combustor and a thrust nozzle. A strut was used to increase the contraction ratio and to inject fuels, as well as a mixing enhancement device. Several wall cavities were also employed for flame-holding. In order to shorten the ignition delay time of the kerosene fuel, a little amount of hydrogen was used as a pilot flame. The pressure along the combustor has an evident raise after ignition occurred. Consequently thrust was observed during the fuel-on period. However, the thrust was still less than the drag of the scramjet model. For this reason, the drag variation produced by different strut and cavities was tested. Typical results showed that the cavities do not influence the drag so much, but the length of the strut does.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A new mathematical model for the transient flow in the composite low permeability is established. It is solved by FEM with different boundary conditions such as infinite, circular closed and constant pressure boundary conditions. The typical curves for transient wellbore pressure have been presented. It is shown that the pressure and pressure derivative curves with composite start-up pressure gradients have different slopes which are depended on the start-up pressure gradients and the mobility radios in different regions. The boundary effects are the same as the normal reservoirs without start-up pressure gradients. The study provides a new tool to analyze the transient pressure test data in the low permeability reservoir.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An experimental investigation of Bénard-Marangoni convection has been performed in double immiscible liquid layers of rectangular configuration on the ground. The two kinds of liquid are 10cst silicon oil and FC-70 respectively. The size of rectangular chamber is 100mm×40mm in horizontal cross-section. The evolution processes of convection are observed in the differential thickness ratio of two liquid layers. The critical temperature difference was measured via the detections of fluid convection by a particle image velocimetry (PIV) in the vertical cross-section of the liquid layer. The critical temperature difference or the critical Marangoni number was given. And the influence of the thickness ratio of two liquid layers on the convection instability was discussed. The evolution processes of patterns and temperature distributions on the interface are displayed by using thermal liquid crystal. The velocity distributions on the interface were also obtained. In comparison with the thermocapillary effect, the effect of buoyancy convection will relatively increase when the depth of the liquid layer increases. Because of the coupling of buoyancy and thermocapillary effect, the convection instability is much more complex than that in the microgravity environment. And the critical convection depends on the change of the thickness of liquid layers and also the change of thickness ratio of two liquid layers.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Based on the three-dimensional elastic inclusion model proposed by Dobrovolskii, we developed a rheological inclusion model to study earthquake preparation processes. By using the Corresponding Principle in the theory of rheologic mechanics, we derived the analytic expressions of viscoelastic displacement U(r, t) , V(r, t) and W(r, t), normal strains epsilon(xx) (r, t), epsilon(yy) (r, t) and epsilon(zz) (r, t) and the bulk strain theta (r, t) at an arbitrary point (x, y, z) in three directions of X axis, Y axis and Z axis produced by a three-dimensional inclusion in the semi-infinite rheologic medium defined by the standard linear rheologic model. Subsequent to the spatial-temporal variation of bulk strain being computed on the ground produced by such a spherical rheologic inclusion, interesting results are obtained, suggesting that the bulk strain produced by a hard inclusion change with time according to three stages (alpha, beta, gamma) with different characteristics, similar to that of geodetic deformation observations, but different with the results of a soft inclusion. These theoretical results can be used to explain the characteristics of spatial-temporal evolution, patterns, quadrant-distribution of earthquake precursors, the changeability, spontaneity and complexity of short-term and imminent-term precursors. It offers a theoretical base to build physical models for earthquake precursors and to predict the earthquakes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Evaporative convection and instability give rise to both scientific and technological interests. Practically, a number of the industrial applications such as thin-film evaporators, boiling technologies and heat pipes concern with the evaporation process of which through the vapor-liquid interface the heat and mass transfer occur. From a physical viewpoint, one of interesting questions is the mechanisms of convection instability in thin-liquid layers induced by the coupling of evaporation phenomenon and Marangoni effect at the mass exchanged interface. Classical theories, including Rayleigh’s and Pearson’s, have only successfully explained convection in a liquid layer heated from below without evaporation. However these theories are unable to explain the convection in an evaporating thin layer, especially liquid layer is cooled from below. In present paper, a new two-sided model is put forward rather than the one-sided model in previous works. In previous works, the vapor is treated as passive gas and dynamics of vapor has been ignored. In this case, the vapor liquid system can be described by one-sided model. In our two-sided model, the dynamics of vapor should be considered. Linear instability analysis of the Marangoni-Bénard convection in the two-layer system with an evaporation interface is performed. We define a new evaporating Biot number which is different from the Biot number in one-sided model and obtain the curves of critical Marangoni number versus wave number. In our theoretical results, the Biot number and the evaporating velocity play a major role in the stability of the vapor-liquid system.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A new numerical model for transient flows of polymer solution in a circular bounded composite formation is presented in this paper. Typical curves of the wellbore transient pressure are yielded by FEM. The effects of non-Newtonian power-law index, mobility and boundary distance have been considered. It is found that for the mobility ratio larger than 1, which is favorable for the polymer flooding, the pressure derivative curve in log-log form rises up without any hollow. On the other hand, if the pressure derivative curve has a hollow and then is raised up, we say that the polymer flooding fails. Finally, the new model has been extended to more complicated boundary case.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A numerical optimisation approach to identify dominant dimensionless variables in porous media flows by sensitivity analysis is proposed. We have validated the approach at first by examining a simple oil reservoir theoretically and numerically as well. A more complex water-flooding reservoir is examined based on sensitivity analysis of oil recovery to the similarity parameters, thus demonstrating the feasibility of the proposed approach to identify dominant similarity parameters for water-oil two-phase flows.