955 resultados para 2-Hydroxypropyl-beta-cyclodextrin


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Realizou-se estudo do tipo duplo anonimato em 18 pacientes com hepatite aguda benigna. O gruoo experimental foi testado com uma provável droga de ação antiviral: 1-BETA-D-RIBOFURANOSIL, 1,2,4-TRIAZOLE-3- CARBOXAMIDE. O grupo controle ingeriu um placebo de lactose. Teve-se especial cuidado na seleção de pacientes, incluindo apenas pacientes que preenchessem critérios bem estabelecidos. Os pacientes foram seguidos semanalmente, avaliando-os clínica e laboratorialmente. Os resultados não evidenciaram diferenças significativas entre os dois grupos, sugerindo-se estudos com casuística mais numerosa e em regime de internação hospitalar.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

AIMS/HYPOTHESIS: MicroRNAs are key regulators of gene expression involved in health and disease. The goal of our study was to investigate the global changes in beta cell microRNA expression occurring in two models of obesity-associated type 2 diabetes and to assess their potential contribution to the development of the disease. METHODS: MicroRNA profiling of pancreatic islets isolated from prediabetic and diabetic db/db mice and from mice fed a high-fat diet was performed by microarray. The functional impact of the changes in microRNA expression was assessed by reproducing them in vitro in primary rat and human beta cells. RESULTS: MicroRNAs differentially expressed in both models of obesity-associated type 2 diabetes fall into two distinct categories. A group including miR-132, miR-184 and miR-338-3p displays expression changes occurring long before the onset of diabetes. Functional studies indicate that these expression changes have positive effects on beta cell activities and mass. In contrast, modifications in the levels of miR-34a, miR-146a, miR-199a-3p, miR-203, miR-210 and miR-383 primarily occur in diabetic mice and result in increased beta cell apoptosis. These results indicate that obesity and insulin resistance trigger adaptations in the levels of particular microRNAs to allow sustained beta cell function, and that additional microRNA deregulation negatively impacting on insulin-secreting cells may cause beta cell demise and diabetes manifestation. CONCLUSIONS/INTERPRETATION: We propose that maintenance of blood glucose homeostasis or progression toward glucose intolerance and type 2 diabetes may be determined by the balance between expression changes of particular microRNAs.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

GLP-1 protects β-cells against apoptosis by still incompletely understood mechanisms. In a recent study, we searched for novel anti-apoptotic pathways by performing comparative transcriptomic analysis of islets from Gipr-/-;Glp-1r-/- mice, which show increased susceptibility to cytokine-induced apoptosis. We observed a strong reduction in IGF-1R expression in the knockout islets suggesting a link between the gluco-incretin and IGF-1R signaling pathways. Using MIN6 and primary islet cells, we demonstrated that GLP-1 strongly stimulates IGF-1R expression and that activation of the IGF-1R/Akt signaling pathway required active secretion of IGF-2 by the β-cells. We showed that inactivation of the IGF-1 receptor gene in β-cells or preventing its up-regulation by GLP-1, as well as suppressing IGF-2 expression or action, blocked the protective effect of GLP-1 against cytokine-induced apoptosis. Thus, an IGF-2/IGF-1 receptor autocrine loop operates in β-cells and GLP-1 increases its activity by enhancing IGF-1R expression and by stimulating IGF-2 secretion. This mechanism is required for GLP-1 to protect β-cells against apoptosis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In healthy individuals, insulin resistance is associated with physiological conditions such as pregnancy or body weight gain and triggers an increase in beta cell number and insulin secretion capacity to preserve normoglycaemia. Failure of this beta cell compensation capacity is a fundamental cause of diabetic hyperglycaemia. Incomplete understanding of the molecular mechanisms controlling the plasticity of adult beta cells mechanisms and how these cells fail during the pathogenesis of diabetes strongly limits the ability to develop new beta cell-specific therapies. Here, current knowledge of the signalling pathways controlling beta cell plasticity is reviewed, and possible directions for future research are discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Schizophrenia is a devastating mental disorder that has a largeimpact on the quality of life for those who are afflicted and isvery costly for families and society.[1] Although the etiology ofschizophrenia is still unknown and no cure has yet beenfound, it is treatable, and pharmacological therapy often producessatisfactory results. Among the various antipsychoticdrugs in use, clozapine is widely recognized as one ofthemost clinically effective agents, even if it elicits significant sideeffects such as metabolic disorders and agranulocytosis. Clozapineand the closely related compound olanzapine are goodexamples ofdrug s with a complex multi-receptor profile ;[2]they have affinities toward serotonin, dopamine, a adrenergic,muscarinic, and histamine receptors, among others.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors that regulate the expression of many genes involved in lipid metabolism. The biological roles of PPARalpha and PPARgamma are relatively well understood, but little is known about the function of PPARbeta. To address this question, and because PPARbeta is expressed to a high level in the developing brain, we used reaggregated brain cell cultures prepared from dissociated fetal rat telencephalon as experimental model. In these primary cultures, the fetal cells initially form random aggregates, which progressively acquire a tissue-specific pattern resembling that of the brain. PPARs are differentially expressed in these aggregates, with PPARbeta being the prevalent isotype. PPARalpha is present at a very low level, and PPARgamma is absent. Cell type-specific expression analyses revealed that PPARbeta is ubiquitous and most abundant in some neurons, whereas PPARalpha is predominantly astrocytic. We chose acyl-CoA synthetases (ACSs) 1, 2, and 3 as potential target genes of PPARbeta and first analyzed their temporal and cell type-specific pattern. This analysis indicated that ACS2 and PPARbeta mRNAs have overlapping expression patterns, thus designating the ACS2 gene as a putative target of PPARbeta. Using a selective PPARbeta activator, we found that the ACS2 gene is transcriptionally regulated by PPARbeta, demonstrating a role for PPARbeta in brain lipid metabolism.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The purpose of this study was to design microspheres combining sustained delivery and enhanced intracellular penetration for ocular administration of antisense oligonucleotides. Nanosized complexes of antisense TGF-beta2 phosphorothioate oligonucleotides (PS-ODN) with polyethylenimine (PEI), and naked PS-ODN were encapsulated into poly(lactide-co-glycolide) microspheres prepared by the double-emulsion solvent evaporation method. The PS-ODN was introduced either naked or complexed in the inner aqueous phase of the first emulsion. We observed a marked influence of microsphere composition on porosity, size distribution and PS-ODN encapsulation efficiency. Mainly, the presence of PEI induced the formation of large pores observed onto microsphere surface. Introduction of NaCl in the outer aqueous phase increased the encapsulation efficiency and reduced microsphere porosity. In vitro release kinetic of PS-ODN was also investigated. Clearly, the higher the porosity, the faster was the release and the higher was the burst effect. Using an analytical solution of Fick's second law of diffusion, it was shown that the early phase of PS-ODN and PS-ODN-PEI complex release was primarily controlled by pure diffusion, irrespectively of the type of microsphere. Finally, microspheres containing antisense TGF-beta2 nanosized complexes were shown, after subconjunctival administration to rabbit, to significantly increase intracellular penetration of ODN in conjunctival cells and subsequently to improve bleb survival in a rabbit experimental model of filtering surgery. These results open up interesting prospective for the local controlled delivery of genetic material into the eye.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

1. We compared the changes in binding energy generated by two mutations that shift in divergent directions the constitutive activity of the human beta(2) adrenergic receptor (beta(2)AR). 2. A constitutively activating mutant (CAM) and the double alanine replacement (AA mutant) of catechol-binding serines (S204A, S207A) in helix 5 were stably expressed in CHO cell lines, and used to measure the binding affinities of more than 40 adrenergic ligands. Moreover, the efficacy of the same group of compounds was determined as intrinsic activity for maximal adenylyl cyclase stimulation in wild-type beta(2)AR. 3. Although the two mutations had opposite effects on ligand affinity, the extents of change were in both cases largely correlated with the degree of ligand efficacy. This was particularly evident if the extra loss of binding energy due to hydrogen bond deletion in the AA mutant was taken into account. Thus the data demonstrate that there is an overall linkage between the configuration of the binding pocket and the intrinsic equilibrium between active and inactive receptor forms. 4. We also found that AA mutation-induced affinity changes for catecholamine congeners gradually lacking ethanolamine substituents were linearly correlated to the loss of affinity that such modifications of the ligand cause for wild-type receptor. This indicates that the strength of bonds between catechol ring and helix 5 is critically dependent on the rest of interactions of the beta-ethanolamine tail with other residues of the beta(2)-AR binding pocket.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

(-)-1-(3,4-Dimethoxyphenetylamino)-3-(3,4-dihydroxy)-2-propanol [(-)-RO363] is a highly selective beta(1)-adrenergic receptor (beta(1)AR) agonist. To study the binding site of beta(1)-selective agonist, chimeric beta(1)/beta(2)ARs and Ala-substituted beta(1)ARs were constructed. Several key residues of beta(1)AR [Leu(110) and Thr(117) in transmembrane domain (TMD) 2], and Phe(359) in TMD 7] were found to be responsible for beta(1)-selective binding of (-)-RO363, as determined by competitive binding. Based on these results, we built a three-dimensional model of the binding domain for (-)-RO363. The model indicated that TMD 2 and TMD 7 of beta(1)AR form a binding pocket; the methoxyphenyl group of N-substituent of (-)-RO363 seems to locate within the cavity surrounded by Leu(110), Thr(117), and Phe(359). The amino acids Leu(110) and Phe(359) interact with the phenyl ring of (-)-RO363, whereas Thr(117) forms hydrogen bond with the methoxy group of (-)-RO363. To examine the interaction of these residues with beta(1)AR in an active state, each of the amino acids was changed to Ala in a constitutively active (CA)-beta(1)AR mutant. The degree of decrease in the affinity of CA-beta(1)AR for (-)-RO363 was essentially the same as that of wild-type beta(1)AR when mutated at Leu(110) and Thr(117). However, the affinity was decreased in Ala-substituted mutant of Phe(359) compared with that of wild-type beta(1)AR. These results indicated that Leu(110) and Thr(117) are necessary for the initial binding of (-)-RO363 with beta(1)-selectivity, and interaction of Phe(359) with the N-substituent of (-)-RO363 in an active state is stronger than in the resting state.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

OBJECTIVE: The gluco-incretin hormones glucagon-like peptide (GLP)-1 and gastric inhibitory peptide (GIP) protect beta-cells against cytokine-induced apoptosis. Their action is initiated by binding to specific receptors that activate the cAMP signaling pathway, but the downstream events are not fully elucidated. Here we searched for mechanisms that may underlie this protective effect. RESEARCH DESIGN AND METHODS: We performed comparative transcriptomic analysis of islets from control and GipR(-/-);Glp-1-R(-/-) mice, which have increased sensitivity to cytokine-induced apoptosis. We found that IGF-1 receptor expression was markedly reduced in the mutant islets. Because the IGF-1 receptor signaling pathway is known for its antiapoptotic effect, we explored the relationship between gluco-incretin action, IGF-1 receptor expression and signaling, and apoptosis. RESULTS: We found that GLP-1 robustly stimulated IGF-1 receptor expression and Akt phosphorylation and that increased Akt phosphorylation was dependent on IGF-1 but not insulin receptor expression. We demonstrated that GLP-1-induced Akt phosphorylation required active secretion, indicating the presence of an autocrine activation mechanism; we showed that activation of IGF-1 receptor signaling was dependent on the secretion of IGF-2. We demonstrated, both in MIN6 cell line and primary beta-cells, that reducing IGF-1 receptor or IGF-2 expression or neutralizing secreted IGF-2 suppressed GLP-1-induced protection against apoptosis. CONCLUSIONS: An IGF-2/IGF-1 receptor autocrine loop operates in beta-cells. GLP-1 increases its activity by augmenting IGF-1 receptor expression and by stimulating secretion; this mechanism is required for GLP-1-induced protection against apoptosis. These findings may lead to novel ways of preventing beta-cell loss in the pathogenesis of diabetes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

IGF2 is an autocrine ligand for the beta cell IGF1R receptor and GLP-1 increases the activity of this autocrine loop by enhancing IGF1R expression, a mechanism that mediates the trophic effects of GLP-1 on beta cell mass and function. Here, we investigated the regulation of IGF2 biosynthesis and secretion. We showed that glutamine rapidly and strongly induced IGF2 mRNA translation using reporter constructs transduced in MIN6 cells and primary islet cells. This was followed by rapid secretion of IGF2 via the regulated pathway, as revealed by the presence of mature IGF2 in insulin granule fractions and by inhibition of secretion by nimodipine and diazoxide. When maximally stimulated by glutamine, the amount of secreted IGF2 rapidly exceeded its initial intracellular pool and tolbutamide, and high K(+) increased IGF2 secretion only marginally. This indicates that the intracellular pool of IGF2 is small and that sustained secretion requires de novo synthesis. The stimulatory effect of glutamine necessitates its metabolism but not mTOR activation. Finally, exposure of insulinomas or beta cells to glutamine induced Akt phosphorylation, an effect that was dependent on IGF2 secretion, and reduced cytokine-induced apoptosis. Thus, glutamine controls the activity of the beta cell IGF2/IGF1R autocrine loop by increasing the biosynthesis and secretion of IGF2. This autocrine loop can thus integrate changes in feeding and metabolic state to adapt beta cell mass and function.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Tissue protein hypercatabolism (TPH) is a most important feature in cancer cachexia, particularly with regard to the skeletal muscle. The rat ascites hepatoma Yoshida AH-130 is a very suitable model system for studying the mechanisms involved in the processes that lead to tissue depletion, since it induces in the host a rapid and progressive muscle waste mainly due to TPH (Tessitore, L., G. Bonelli, and F. M. Baccino. 1987. Biochem. J. 241:153-159). Detectable plasma levels of tumor necrosis factor-alpha associated with marked perturbations in the hormonal homeostasis have been shown to concur in forcing metabolism into a catabolic setting (Tessitore, L., P. Costelli, and F. M. Baccino. 1993. Br. J. Cancer. 67:15-23). The present study was directed to investigate if beta 2-adrenergic agonists, which are known to favor skeletal muscle hypertrophy, could effectively antagonize the enhanced muscle protein breakdown in this cancer cachexia model. One such agent, i.e., clenbuterol, indeed largely prevented skeletal muscle waste in AH-130-bearing rats by restoring protein degradative rates close to control values. This normalization of protein breakdown rates was achieved through a decrease of the hyperactivation of the ATP-ubiquitin-dependent proteolytic pathway, as previously demonstrated in our laboratory (Llovera, M., C. García-Martínez, N. Agell, M. Marzábal, F. J. López-Soriano, and J. M. Argilés. 1994. FEBS (Fed. Eur. Biochem. Soc.) Lett. 338:311-318). By contrast, the drug did not exert any measurable effect on various parenchymal organs, nor did it modify the plasma level of corticosterone and insulin, which were increased and decreased, respectively, in the tumor hosts. The present data give new insights into the mechanisms by which clenbuterol exerts its preventive effect on muscle protein waste and seem to warrant the implementation of experimental protocols involving the use of clenbuterol or alike drugs in the treatment of pathological states involving TPH, particularly in skeletal muscle and heart, such as in the present model of cancer cachexia.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

OBJECTIVE: Chronic activation of the nuclear factor-kappaB (NF-kappaB) in white adipose tissue leads to increased production of pro-inflammatory cytokines, which are involved in the development of insulin resistance. It is presently unknown whether peroxisome proliferator-activated receptor (PPAR) beta/delta activation prevents inflammation in adipocytes. RESEARCH DESIGN AND METHODS AND RESULTS: First, we examined whether the PPARbeta/delta agonist GW501516 prevents lipopolysaccharide (LPS)-induced cytokine production in differentiated 3T3-L1 adipocytes. Treatment with GW501516 blocked LPS-induced IL-6 expression and secretion by adipocytes and the subsequent activation of the signal transducer and activator of transcription 3 (STAT3)-Suppressor of cytokine signaling 3 (SOCS3) pathway. This effect was associated with the capacity of GW501516 to impede LPS-induced NF-kappaB activation. Second, in in vivo studies, white adipose tissue from Zucker diabetic fatty (ZDF) rats, compared with that of lean rats, showed reduced PPARbeta/delta expression and PPAR DNA-binding activity, which was accompanied by enhanced IL-6 expression and NF-kappaB DNA-binding activity. Furthermore, IL-6 expression and NF-kappaB DNA-binding activity was higher in white adipose tissue from PPARbeta/delta-null mice than in wild-type mice. Because mitogen-activated protein kinase-extracellular signal-related kinase (ERK)1/2 (MEK1/2) is involved in LPS-induced NF-kappaB activation in adipocytes, we explored whether PPARbeta/delta prevented NF-kappaB activation by inhibiting this pathway. Interestingly, GW501516 prevented ERK1/2 phosphorylation by LPS. Furthermore, white adipose tissue from animal showing constitutively increased NF-kappaB activity, such as ZDF rats and PPARbeta/delta-null mice, also showed enhanced phospho-ERK1/2 levels. CONCLUSIONS: These findings indicate that activation of PPARbeta/delta inhibits enhanced cytokine production in adipocytes by preventing NF-kappaB activation via ERK1/2, an effect that may help prevent insulin resistance.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The beta 2-adrenergic receptor undergoes isomerization between an inactive conformation (R) and an active conformation (R*). The formation of the active conformation of the receptor molecule can be promoted by adrenergic agonists or by mutations in the third cytoplasmic domain that constitutively activate the receptor. Here we show that, of several beta-adrenergic receptor-blocking drugs tested, only two, ICI 118551 and betaxolol, inhibit the basal signaling activity of the beta 2-adrenergic receptor, thus acting as negative antagonists. We document the molecular properties of the more efficacious ICI 118551; (i) it shows higher affinity for the inactive form of the receptor and (ii) it inhibits the spontaneous formation of a beta-adrenergic receptor kinase substrate by the receptor. These properties are opposite those of adrenergic agonists, indicating that, in a fashion reciprocal to that of agonists, negative antagonists promote the formation of an inactive conformation of the receptor.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

OBJECTIVE: Our laboratory has previously established in vitro that a caspase-generated RasGAP NH(2)-terminal moiety, called fragment N, potently protects cells, including insulinomas, from apoptotic stress. We aimed to determine whether fragment N can increase the resistance of pancreatic beta-cells in a physiological setting. RESEARCH DESIGN AND METHODS: A mouse line, called rat insulin promoter (RIP)-N, was generated that bears a transgene containing the rat insulin promoter followed by the cDNA-encoding fragment N. The histology, functionality, and resistance to stress of RIP-N islets were then assessed. RESULTS: Pancreatic beta-cells of RIP-N mice express fragment N, activate Akt, and block nuclear factor kappaB activity without affecting islet cell proliferation or the morphology and cellular composition of islets. Intraperitoneal glucose tolerance tests revealed that RIP-N mice control their glycemia similarly as wild-type mice throughout their lifespan. Moreover, islets isolated from RIP-N mice showed normal glucose-induced insulin secretory capacities. They, however, displayed increased resistance to apoptosis induced by a series of stresses including inflammatory cytokines, fatty acids, and hyperglycemia. RIP-N mice were also protected from multiple low-dose streptozotocin-induced diabetes, and this was associated with reduced in vivo beta-cell apoptosis. CONCLUSIONS: Fragment N efficiently increases the overall resistance of beta-cells to noxious stimuli without interfering with the physiological functions of the cells. Fragment N and the pathway it regulates represent, therefore, a potential target for the development of antidiabetes tools.