933 resultados para 1H and 13C nuclear magnetic resonance
Resumo:
AbstractTuberculosis is a disease whose incidence has increased principally as a consequence of HIV infection and use of immunosuppressive drugs. The abdomen is the most common site of extrapulmonary tuberculosis. It may be confused with several different conditions such as inflammatory bowel disease, cancer and other infectious diseases. Delay in the diagnosis may result in significantly increased morbidity, and therefore an early recognition of the condition is essential for proper treatment. In the present essay, cases with confirmed diagnosis of abdominal tuberculosis were assessed by means of computed tomography and magnetic resonance imaging, demonstrating the involvement of different organs and systems, and presentations which frequently lead radiologists to a diagnostic dilemma. A brief literature review was focused on imaging findings and their respective prevalence.
Resumo:
AbstractObjective:To evaluate by magnetic resonance imaging changes in bone marrow of patients undergoing treatment for type I Gaucher’s disease.Materials and Methods:Descriptive, cross-sectional study of Gaucher’s disease patients submitted to 3 T magnetic resonance imaging of femurs and lumbar spine. The images were blindly reviewed and the findings were classified according to the semiquantitative bone marrow burden (BMB) scoring system.Results:All of the seven evaluated patients (three men and four women) presented signs of bone marrow infiltration. Osteonecrosis of the femoral head was found in three patients, Erlenmeyer flask deformity in five, and no patient had vertebral body collapse. The mean BMB score was 11, ranging from 9 to 14.Conclusion:Magnetic resonance imaging is currently the method of choice for assessing bone involvement in Gaucher’s disease in adults due to its high sensitivity to detect both focal and diffuse bone marrow changes, and the BMB score is a simplified method for semiquantitative analysis, without depending on advanced sequences or sophisticated hardware, allowing for the classification of the disease extent and assisting in the treatment monitoring.
Resumo:
AbstractObjective:To compare the accuracy of computer-aided ultrasound (US) and magnetic resonance imaging (MRI) by means of hepatorenal gradient analysis in the evaluation of nonalcoholic fatty liver disease (NAFLD) in adolescents.Materials and Methods:This prospective, cross-sectional study evaluated 50 adolescents (aged 11–17 years), including 24 obese and 26 eutrophic individuals. All adolescents underwent computer-aided US, MRI, laboratory tests, and anthropometric evaluation. Sensitivity, specificity, positive and negative predictive values and accuracy were evaluated for both imaging methods, with subsequent generation of the receiver operating characteristic (ROC) curve and calculation of the area under the ROC curve to determine the most appropriate cutoff point for the hepatorenal gradient in order to predict the degree of steatosis, utilizing MRI results as the gold-standard.Results:The obese group included 29.2% girls and 70.8% boys, and the eutrophic group, 69.2% girls and 30.8% boys. The prevalence of NAFLD corresponded to 19.2% for the eutrophic group and 83% for the obese group. The ROC curve generated for the hepatorenal gradient with a cutoff point of 13 presented 100% sensitivity and 100% specificity. As the same cutoff point was considered for the eutrophic group, false-positive results were observed in 9.5% of cases (90.5% specificity) and false-negative results in 0% (100% sensitivity).Conclusion:Computer-aided US with hepatorenal gradient calculation is a simple and noninvasive technique for semiquantitative evaluation of hepatic echogenicity and could be useful in the follow-up of adolescents with NAFLD, population screening for this disease as well as for clinical studies.
Resumo:
AbstractMagnetic resonance imaging has revolutionized the diagnosis of shoulder lesions, in many cases becoming the method of choice. However, anatomical variations, artifacts and the particularity of the method may be a source of pitfalls, especially for less experienced radiologists. In order to avoid false-positive and false-negative results, the authors carried out a compilation of imaging findings that may simulate injury. It is the authors’ intention to provide a useful, consistent and comprehensive reference for both beginner residents and skilled radiologists who work with musculoskeletal magnetic resonance imaging, allowing for them to develop more precise reports and helping them to avoid making mistakes.
Resumo:
AbstractObjective:To define the distal femur rotation pattern in a Brazilian population, correlating such pattern with the one suggested by the arthroplasty instruments, and analyzing the variability of each anatomic parameter.Materials and Methods:A series of 101 magnetic resonance imaging studies were evaluated in the period between April and June 2012. The epidemiological data collection was performed with the aid of the institution's computed imaging system, and the sample included 52 male and 49 female patients. The measurements were made in the axial plane, with subsequent correlation and triangulation with the other plans. The posterior condylar line was used as a reference for angle measurements. Subsequently, the anatomical and surgical transepicondylar axes and the anteroposterior trochlear line were specified. The angles between the reference line and the studied lines were calculated with the aid of the institution's software.Results:The mean angle between the anatomical transepicondylar axis and the posterior condylar line was found to be 6.89°, ranging from 0.25° to 12°. For the surgical transepicondylar axis, the mean value was 2.89°, ranging from –2.23° (internal rotation) to 7.86°, and for the axis perpendicular to the anteroposterior trochlear line, the mean value was 4.77°, ranging from –2.09° to 12.2°.Conclusion:The anatomical transepicondylar angle showed mean values corresponding to the measurement observed in the Caucasian population. The utilized instruments are appropriate, but no anatomical parameter proved to be steady enough to be used in isolation.
Resumo:
Abstract Ischemic cardiomyopathy is one of the major health problems worldwide, representing a significant part of mortality in the general population nowadays. Cardiac magnetic resonance imaging (CMRI) and cardiac computed tomography (CCT) are noninvasive imaging methods that serve as useful tools in the diagnosis of coronary artery disease and may also help in screening individuals with risk factors for developing this illness. Technological developments of CMRI and CCT have contributed to the rise of several clinical indications of these imaging methods complementarily to other investigation methods, particularly in cases where they are inconclusive. In terms of accuracy, CMRI and CCT are similar to the other imaging methods, with few absolute contraindications and minimal risks of adverse side-effects. This fact strengthens these methods as powerful and safe tools in the management of patients. The present study is aimed at describing the role played by CMRI and CCT in the diagnosis of ischemic cardiomyopathies.
Resumo:
The 2-methoxycinnamylidenepyruvic acid (2-MeO-HCP) was synthesized and characterized for nuclear magnetic resonance (¹H and 13C NMR), mass spectrometry (MS), Infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC). The application of DSC for purity determination is well documented in literature and is used in the analysis of pure organic compounds. The molecular geometry and vibrational frequencies of 2-MeO-HCP have been calculated.
Resumo:
In this thesis three experiments with atomic hydrogen (H) at low temperatures T<1 K are presented. Experiments were carried out with two- (2D) and three-dimensional (3D) H gas, and with H atoms trapped in solid H2 matrix. The main focus of this work is on interatomic interactions, which have certain specific features in these three systems considered. A common feature is the very high density of atomic hydrogen, the systems are close to quantum degeneracy. Short range interactions in collisions between atoms are important in gaseous H. The system of H in H2 differ dramatically because atoms remain fixed in the H2 lattice and properties are governed by long-range interactions with the solid matrix and with H atoms. The main tools in our studies were the methods of magnetic resonance, with electron spin resonance (ESR) at 128 GHz being used as the principal detection method. For the first time in experiments with H in high magnetic fields and at low temperatures we combined ESR and NMR to perform electron-nuclear double resonance (ENDOR) as well as coherent two-photon spectroscopy. This allowed to distinguish between different types of interactions in the magnetic resonance spectra. Experiments with 2D H gas utilized the thermal compression method in homogeneous magnetic field, developed in our laboratory. In this work methods were developed for direct studies of 3D H at high density, and for creating high density samples of H in H2. We measured magnetic resonance line shifts due to collisions in the 2D and 3D H gases. First we observed that the cold collision shift in 2D H gas composed of atoms in a single hyperfine state is much smaller than predicted by the mean-field theory. This motivated us to carry out similar experiments with 3D H. In 3D H the cold collision shift was found to be an order of magnitude smaller for atoms in a single hyperfine state than that for a mixture of atoms in two different hyperfine states. The collisional shifts were found to be in fair agreement with the theory, which takes into account symmetrization of the wave functions of the colliding atoms. The origin of the small shift in the 2D H composed of single hyperfine state atoms is not yet understood. The measurement of the shift in 3D H provides experimental determination for the difference of the scattering lengths of ground state atoms. The experiment with H atoms captured in H2 matrix at temperatures below 1 K originated from our work with H gas. We found out that samples of H in H2 were formed during recombination of gas phase H, enabling sample preparation at temperatures below 0.5 K. Alternatively, we created the samples by electron impact dissociation of H2 molecules in situ in the solid. By the latter method we reached highest densities of H atoms reported so far, 3.5(5)x1019 cm-3. The H atoms were found to be stable for weeks at temperatures below 0.5 K. The observation of dipolar interaction effects provides a verification for the density measurement. Our results point to two different sites for H atoms in H2 lattice. The steady-state nuclear polarizations of the atoms were found to be non-thermal. The possibility for further increase of the impurity H density is considered. At higher densities and lower temperatures it might be possible to observe phenomena related to quantum degeneracy in solid.
Resumo:
Cutin and suberin are structural and protective polymers of plant surfaces. The epidermal cells of the aerial parts of plants are covered with an extracellular cuticular layer, which consists of polyester cutin, highly resistant cutan, cuticular waxes and polysaccharides which link the layer to the epidermal cells. A similar protective layer is formed by a polyaromatic-polyaliphatic biopolymer suberin, which is present particularly in the cell walls of the phellem layer of periderm of the underground parts of plants (e.g. roots and tubers) and the bark of trees. In addition, suberization is also a major factor in wound healing and wound periderm formation regardless of the plants’ tissue. Knowledge of the composition and functions of cuticular and suberin polymers is important for understanding the physiological properties for the plants and for nutritional quality when these plants are consumed as foods. The aims of the practical work were to assess the chemical composition of cuticular polymers of several northern berries and seeds and suberin of two varieties of potatoes. Cutin and suberin were studied as isolated polymers and further after depolymerization as soluble monomers and solid residues. Chemical and enzymatic depolymerization techniques were compared and a new chemical depolymerization method was developed. Gas chromatographic analysis with mass spectrometric detection (GC-MS) was used to assess the monomer compositions. Polymer investigations were conducted with solid state carbon-13 cross polarization magic angle spinning nuclear magnetic resonance spectroscopy (13C CP-MAS NMR), Fourier transform infrared spectroscopy (FTIR) and microscopic analysis. Furthermore, the development of suberin over one year of post-harvest storage was investigated and the cuticular layers from berries grown in the North and South of Finland were compared. The results show that the amounts of isolated cuticular layers and cutin monomers, as well as monomeric compositions vary greatly between the berries. The monomer composition of seeds was found to differ from the corresponding berry peel monomers. The berry cutin monomers were composed mostly of long-chain aliphatic ω-hydroxy acids, with various mid-chain functionalities (double-bonds, epoxy, hydroxy and keto groups). Substituted α,ω-diacids predominated over ω-hydroxy acids in potato suberin monomers and slight differences were found between the varieties. The newly-developed closed tube chemical method was found to be suitable for cutin and suberin analysis and preferred over the solvent-consuming and laborious reflux method. Enzymatic hydrolysis with cutinase was less effective than chemical methanolysis and showed specificity towards α,ω-diacid bonds. According to 13C CP-MAS NMR and FTIR, the depolymerization residues contained significant amounts of aromatic structures, polysaccharides and possible cutan-type aliphatic moieties. Cultivation location seems to have effect on cuticular composition. The materials studied contained significant amounts of different types of biopolymers that could be utilized for several purposes with or without further processing. The importance of the so-called waste material from industrial processes of berries and potatoes as a source of either dietary fiber or specialty chemicals should be further investigated in detail. The evident impact of cuticular and suberin polymers, among other fiber components, on human health should be investigated in clinical trials. These by-product materials may be used as value-added fiber fractions in the food industry and as raw materials for specialty chemicals such as lubricants and emulsifiers, or as building blocks for novel polymers.
Resumo:
Systemic iron overload (IO) is considered a principal determinant in the clinical outcome of different forms of IO and in allogeneic hematopoietic stem cell transplantation (alloSCT). However, indirect markers for iron do not provide exact quantification of iron burden, and the evidence of iron-induced adverse effects in hematological diseases has not been established. Hepatic iron concentration (HIC) has been found to represent systemic IO, which can be quantified safely with magnetic resonance imaging (MRI), based on enhanced transverse relaxation. The iron measurement methods by MRI are evolving. The aims of this study were to implement and optimise the methodology of non-invasive iron measurement with MRI to assess the degree and the role of IO in the patients. An MRI-based HIC method (M-HIC) and a transverse relaxation rate (R2*) from M-HIC images were validated. Thereafter, a transverse relaxation rate (R2) from spin-echo imaging was calibrated for IO assessment. Two analysis methods, visual grading and rSI, for a rapid IO grading from in-phase and out-of-phase images were introduced. Additionally, clinical iron indicators were evaluated. The degree of hepatic and cardiac iron in our study patients and IO as a prognostic factor in patients undergoing alloSCT were explored. In vivo and in vitro validations indicated that M-HIC and R2* are both accurate in the quantification of liver iron. R2 was a reliable method for HIC quantification and covered a wider HIC range than M-HIC and R2*. The grading of IO was able to be performed rapidly with the visual grading and rSI methods. Transfusion load was more accurate than plasma ferritin in predicting transfusional IO. In patients with hematological disorders, the prevalence of hepatic IO was frequent, opposite to cardiac IO. Patients with myelodysplastic syndrome were found to be the most susceptible to IO. Pre-transplant IO predicted severe infections during the early post-transplant period, in contrast to the reduced risk of graft-versus-host disease. Iron-induced, poor transplantation results are most likely to be mediated by severe infections.
Resumo:
The objective of the present study was to identify the single photon emission computed tomography (SPECT) and magnetic resonance (MR) findings in juvenile systemic lupus erythematosus (JSLE) patients with CNS involvement and to try to correlate them with neurological clinical history data and neurological clinical examination. Nineteen patients with JSLE (16 girls and 3 boys, mean age at onset 9.2 years) were submitted to neurological examination, electroencephalography, cerebrospinal fluid analysis, SPECT and MR. All the evaluations were made separately within a period of 15 days. SPECT and MR findings were analyzed independently by two radiologists. Electroencephalography and cerebrospinal fluid analysis revealed no relevant alterations. Ten of 19 patients (53%) presented neurological abnormalities including present or past neurological clinical history (8/19, 42%), abnormal neurological clinical examination (5/19, 26%), and abnormal SPECT or MR (8/19, 42% and 3/19, 16%, respectively). The most common changes in SPECT were cerebral hypoperfusion and heterogeneous distribution of blood flow. The most common abnormalities in MR were leukomalacia and diffuse alterations of white matter. There was a correlation between SPECT and MR (P<0.05). We conclude that SPECT and MR are complementary and useful exams in the evaluation of neurological involvement of lupus.
Resumo:
In the present experimental study we assessed induced osteoarthritis data in rabbits, compared three diagnostic methods, i.e., radiography (XR), computed tomography (CT) and magnetic resonance imaging (MRI), and correlated the imaging findings with those obtained by macroscopic evaluation. Ten young female rabbits of the Norfolk breed were used. Seven rabbits had the right knee immobilized in extension for a period of 12 weeks (immobilized group), and three others did not have a limb immobilized and were maintained under the same conditions (control group). Alterations observed by XR, CT and MRI after the period of immobilization were osteophytes, osteochondral lesions, increase and decrease of joint space, all of them present both in the immobilized and non-immobilized contralateral limbs. However, a significantly higher score was obtained for the immobilized limbs (XT: P = 0.016, CT: P = 0.031, MRI: P = 0.0156). All imaging methods were able to detect osteoarthritis changes after the 12 weeks of immobilization. Macroscopic evaluation identified increased thickening of joint capsule, proliferative and connective tissue in the femoropatellar joint, and irregularities of articular cartilage, especially in immobilized knees. The differences among XR, CT and MRI were not statistically significant for the immobilized knees. However, MRI using a 0.5 Tesla scanner was statistically different from CT and XR for the non-immobilized contralateral knees. We conclude that the three methods detected osteoarthritis lesions in rabbit knees, but MRI was less sensitive than XR and CT in detecting lesions compatible with initial osteoarthritis. Since none of the techniques revealed all the lesions, it is important to use all methods to establish an accurate diagnosis.
Resumo:
The relevance of the relationship between cardiac disease and depressive symptoms is well established. White matter hyperintensity, a bright signal area in the brain on T2-weighted magnetic resonance imaging scans, has been separately associated with cardiovascular risk factors, cardiac disease and late-life depression. However, no study has directly investigated the association between heart failure, major depressive symptoms and the presence of hyperintensities. Using a visual assessment scale, we have investigated the frequency and severity of white matter hyperintensities identified by magnetic resonance imaging in eight patients with late-life depression and heart failure, ten patients with heart failure without depression, and fourteen healthy elderly volunteers. Since the frontal lobe has been the proposed site for the preferential location of white matter hyperintensities in patients with late-life depression, we focused our investigation specifically on this brain region. Although there were no significant group differences in white matter hyperintensities in the frontal region, a significant direct correlation emerged between the severity of frontal periventricular white matter hyperintensity and scores on the Hamilton scale for depression in the group with heart failure and depression (P = 0.016, controlled for the confounding influence of age). There were no significant findings in any other areas of the brain. This pattern of results adds support to a relationship between cardiovascular risk factors and depressive symptoms, and provides preliminary evidence that the presence of white matter hyperintensities specifically in frontal regions may contribute to the severity of depressive symptoms in cardiac disease.