454 resultados para 1G-GDGT-TEX86
Resumo:
The calcareous nannofossils of the Cenomanian/Turonian boundary interval of Sites 1258 and 1260 (Ocean Drilling Program Leg 207) have been studied in order to understand the depositional environment during Oceanic Anoxic Event 2 (OAE2) in the equatorial Atlantic. Nannofossil assemblages show a significant change in relative abundances during the positive d13Corg excursion interval. The strong increase of the high productivity indicator Zeugrhabdotus erectus and the simultaneous decrease of the oligotrophic taxa Watznaueria barnesiae and Watznaueria fossacincta are indicative of enhanced fertility. The decrease of Eprolithus floralis may be attributed to the surface-water temperature increase during OAE2, which is, however, not very significant (~2-3 °C), as suggested by published TEX86 data. It seems more likely that the decrease of E. floralis during OAE2 was evoked by the breakdown of water-column stratification, indicating it as a deep-dwelling species, which prefers stratified waters with a deep nutricline. Prediscosphaera spp. and Retecapsa ficula, which show a significant increase in relative abundances during OAE2, seem to prefer eutrophic environments, while Amphizygus brooksii and Zeugrhabdotus noeliae lower surface-water fertility. Gartnerago segmentatum, Broinsonia spp., Watznaueria biporta, and Seribiscutum gaultensis decrease in abundances during OAE2. It is not clear if they preferred an oligotrophic environment, cooler surface-waters, or if they were inhabitants of the lower photic zone. Published geochemical data suggest that enhanced fertility and higher temperatures during OAE2 may have been caused by submarine volcanic activity through the release of biolimiting micronutrients into the ocean and carbon dioxide into the atmosphere. The breakdown of water-column stratification may have increased further nutrient availability.
Resumo:
Oceanic Anoxic Event 2 (OAE2), spanning the Cenomanian-Turonian boundary (CTB), represents one of the largest perturbations in the global carbon cycle in the last 100 Myr. The d13Ccarb, d13Corg, and d18O chemostratigraphy of a black shale-bearing CTB succession in the Vocontian Basin of France is described and correlated at high resolution to the European CTB reference section at Eastbourne, England, and to successions in Germany, the equatorial and midlatitude proto-North Atlantic, and the U.S. Western Interior Seaway (WIS). Delta13C (offset between d13Ccarb and d13Corg) is shown to be a good pCO2 proxy that is consistent with pCO2 records obtained using biomarker d13C data from Atlantic black shales and leaf stomata data from WIS sections. Boreal chalk d18O records show sea surface temperature (SST) changes that closely follow the Delta13C pCO2 proxy and confirm TEX86 results from deep ocean sites. Rising pCO2 and SST during the Late Cenomanian is attributed to volcanic degassing; pCO2 and SST maxima occurred at the onset of black shale deposition, followed by falling pCO2 and cooling due to carbon sequestration by marine organic productivity and preservation, and increased silicate weathering. A marked pCO2 minimum (~25% fall) occurred with a SST minimum (Plenus Cold Event) showing >4°C of cooling in ~40 kyr. Renewed increases in pCO2, SST, and d13C during latest Cenomanian black shale deposition suggest that a continuing volcanogenic CO2 flux overrode further drawdown effects. Maximum pCO2 and SST followed the end of OAE2, associated with a falling nutrient supply during the Early Turonian eustatic highstand.
Resumo:
Branched glycerol dialkyl glycerol tetraethers (brGDGTs) are membrane lipids produced by soil bacteria and occur in near coastal marine sediments as a result of soil organic matter input. Their abundance relative to marine-derived crenarchaeol, quantified in the BIT index, generally decreases offshore. However, in distal marine sediments, low relative amounts of brGDGTs can often still be observed. Sedimentary in situ production as well as dust input have been suggested as potential, though as yet not well constrained, sources. In this study brGDGT distributions in dust were examined and compared with those in distal marine sediments. Dust was sampled along the equatorial West African coast and brGDGTs were detected in most of the samples, albeit in low abundance. Their degree of methylation and cyclisation, expressed in the MBT' (methylation index of branched tetraethers) and DC (degree of cyclisation) indices, respectively, were comparable with those for African soils, their presumed source. Comparison of DC index values for brGDGTS in global soils, Congo deep-sea river fan sediments and dust with those of distal marine sediments clearly showed, however, that distal marine sediments had significantly higher values. This distinctive distribution is suggestive of sedimentary in situ production as a source of brGDGTs in marine sediments, rather than dust input. The presence of in situ produced brGDGTs in marine sediments means that caution should be exercised when applying the MBT'-CBT palaeothermometer to sediments with low BIT index values, i.e. < 0.1, based on our dataset.
Resumo:
Two types of intact branched glycerol dialkyl glycerol tetraethers (GDGTs) were detected in peat bog samples from Bullenmoor, Northern Germany. Glucuronosyl and glucosyl branched GDGTs comprise on average ca. 4% of the microbial intact polar lipids in the anoxic, acidic peat layer ca. 20 cm below the surface of the bog, suggesting an important ecological role for the source microorganisms. No corresponding phospholipids were detected. Notably, glycosidic branched GDGTs are 5-10 times less abundant than their intact isoprenoid counterparts derived from Archaea, while branched GDGT core lipids exceed their isoprenoid analogues by about an order of magnitude. These contrasting relationships may reflect lower standing stocks of the biomass of producers of branched GDGTs, combined with higher population growth rates relative to soil Archaea. Search strategies for the microbial producers of these conspicuous orphan lipids should benefit from the discovery of their intact polar precursors.
Resumo:
The termination of the African Humid Period in northeastern Africa during the early Holocene was marked by the southward migration of the rain belt and the disappearance of the Green Sahara. This interval of drastic environmental changes was also marked by the initiation of food production by North African huntergatherer populations and thus provides critical information on human-environment relationships. However, existing records of regional climatic and environmental changes exhibit large differences in timing and modes of the wet/dry transition at the end of the African Humid Period. Here we present independent records of changes in river runoff, vegetation and erosion in the Nile River watershed during the Holocene obtained from a unique sedimentary sequence on the Nile River fan using organic and inorganic proxy data. This high-resolution reconstruction allows to examine the phase relationship between the changes of these three parameters and provides a detailed picture of the environmental conditions during the Paleolithic/Neolithic transition. The data show that river runoff decreased gradually during the wet/arid transition at the end of the AHP whereas rapid shifts of vegetation and erosion occurred earlier between 8.7 and about 6 ka BP. These asynchronous changes are compared to other regional records and provide new insights into the threshold responses of the environment to climatic changes. Our record demonstrates that the degradation of the environment in northeastern Africa was more abrupt and occurred earlier than previously thought and may have accelerated the process of domestication in order to secure sustainable food resources for the Neolithic African populations.
Resumo:
At present time, there is a lack of knowledge on the interannual climate-related variability of zooplankton communities of the tropical Atlantic, central Mediterranean Sea, Caspian Sea, and Aral Sea, due to the absence of appropriate databases. In the mid latitudes, the North Atlantic Oscillation (NAO) is the dominant mode of atmospheric fluctuations over eastern North America, the northern Atlantic Ocean and Europe. Therefore, one of the issues that need to be addressed through data synthesis is the evaluation of interannual patterns in species abundance and species diversity over these regions in regard to the NAO. The database has been used to investigate the ecological role of the NAO in interannual variations of mesozooplankton abundance and biomass along the zonal array of the NAO influence. Basic approach to the proposed research involved: (1) development of co-operation between experts and data holders in Ukraine, Russia, Kazakhstan, Azerbaijan, UK, and USA to rescue and compile the oceanographic data sets and release them on CD-ROM, (2) organization and compilation of a database based on FSU cruises to the above regions, (3) analysis of the basin-scale interannual variability of the zooplankton species abundance, biomass, and species diversity.
Resumo:
Relative to the present day, meridional temperature gradients in the Early Eocene age (~56-53 Myr ago) were unusually low, with slightly warmer equatorial regions (Pearson et al., 2007, doi:10.1130/G23175A.1 ) but with much warmer subtropical Arctic (Sluijs et al., 2008, doi:10.1029/2007PA001495) and mid-latitude (Sluijs et al., 2007, doi:10.1038/nature06400) climates. By the end of the Eocene epoch (~34 Myr ago), the first major Antarctic ice sheets had appeared (Zachos et al., 1992, doi:10.1130/0091-7613(1992)020<0569:EOISEO>2.3.CO;2; Barker et al., 2007, doi:10.1016/j.dsr2.2007.07.027), suggesting that major cooling had taken place. Yet the global transition into this icehouse climate remains poorly constrained, as only a few temperature records are available portraying the Cenozoic climatic evolution of the high southern latitudes. Here we present a uniquely continuous and chronostratigraphically well-calibrated TEX86 record of sea surface temperature (SST) from an ocean sediment core in the East Tasman Plateau (palaeolatitude ~65° S). We show that southwest Pacific SSTs rose above present-day tropical values (to ~34° C) during the Early Eocene age (~53 Myr ago) and had gradually decreased to about 21° C by the early Late Eocene age (~36 Myr ago). Our results imply that there was almost no latitudinal SST gradient between subequatorial and subpolar regions during the Early Eocene age (55-50 Myr ago). Thereafter, the latitudinal gradient markedly increased. In theory, if Eocene cooling was largely driven by a decrease in atmospheric greenhouse gas concentration Zachos et al. (2008, doi:10.1038/nature06588), additional processes are required to explain the relative stability of tropical SSTs given that there was more significant cooling at higher latitudes.
Resumo:
A brief (~150 kyr) period of widespread global average surface warming marks the transition between the Paleocene and Eocene epochs, ~56 million years ago. This so-called "Paleocene-Eocene thermal maximum" (PETM) is associated with the massive injection of 13C-depleted carbon, reflected in a negative carbon isotope excursion (CIE). Biotic responses include a global abundance peak (acme) of the subtropical dinoflagellate Apectodinium. Here we identify the PETM in a marine sedimentary sequence deposited on the East Tasman Plateau at Ocean Drilling Program (ODP) Site 1172 and show, based on the organic paleothermometer TEX86, that southwest Pacific sea surface temperatures increased from ~26 °C to ~33°C during the PETM. Such temperatures before, during and after the PETM are >10 °C warmer than predicted by paleoclimate model simulations for this latitude. In part, this discrepancy may be explained by potential seasonal biases in the TEX86 proxy in polar oceans. Additionally, the data suggest that not only Arctic, but also Antarctic temperatures may be underestimated in simulations of ancient greenhouse climates by current generation fully coupled climate models. An early influx of abundant Apectodinium confirms that environmental change preceded the CIE on a global scale. Organic dinoflagellate cyst assemblages suggest a local decrease in the amount of river run off reaching the core site during the PETM, possibly in concert with eustatic rise. Moreover, the assemblages suggest changes in seasonality of the regional hydrological system and storm activity. Finally, significant variation in dinoflagellate cyst assemblages during the PETM indicates that southwest Pacific climates varied significantly over time scales of 103 - 104 years during this event, a finding comparable to similar studies of PETM successions from the New Jersey Shelf.
Resumo:
The long-term warmth of the Eocene (~56 to 34 million years ago) is commonly associated with elevated partial pressure of atmospheric carbon dioxide (pCO2). However, a direct relationship between the two has not been established for short-term climate perturbations. We reconstructed changes in both pCO2 and temperature over an episode of transient global warming called the Middle Eocene Climatic Optimum (MECO; ~40 million years ago). Organic molecular paleothermometry indicates a warming of southwest Pacific sea surface temperatures (SSTs) by 3° to 6°C. Reconstructions of pCO2 indicate a concomitant increase by a factor of 2 to 3. The marked consistency between SST and pCO2 trends during the MECO suggests that elevated pCO2 played a major role in global warming during the MECO.
Resumo:
Hide Intense debate persists about the climatic mechanisms governing hydrologic changes in tropical and subtropical southeast Africa since the Last Glacial Maximum, about 20,000 years ago. In particular, the relative importance of atmospheric and oceanic processes is not firmly established. Southward shifts of the intertropical convergence zone (ITCZ) driven by high-latitude climate changes have been suggested as a primary forcing, whereas other studies infer a predominant influence of Indian Ocean sea surface temperatures on regional rainfall changes. To address this question, a continuous record representing an integrated signal of regional climate variability is required, but has until now been missing. Here we show that remote atmospheric forcing by cold events in the northern high latitudes appears to have been the main driver of hydro-climatology in southeast Africa during rapid climate changes over the past 17,000 years. Our results are based on a reconstruction of precipitation and river discharge changes, as recorded in a marine sediment core off the mouth of the Zambezi River, near the southern boundary of the modern seasonal ITCZ migration. Indian Ocean sea surface temperatures did not exert a primary control over southeast African hydrologic variability. Instead, phases of high precipitation and terrestrial discharge occurred when the ITCZ was forced southwards during Northern Hemisphere cold events, such as Heinrich stadial 1 (around 16,000 years ago) and the Younger Dryas (around 12,000 years ago), or when local summer insolation was high in the late Holocene, i.e., during the last 4,000 years.
Resumo:
We have investigated the distributions and carbon isotopic compositions of archaeal membrane lipids in gas-hydrate-bearing sediments collected from the northern Cascadia Margin offshore from Vancouver Island (Sites U1327 and U1328) by the R/V JOIDES Resolution during IODP Expedition 311. Archaeal lipid biomarkers, including glycerol dialkyl glycerol tetraethers (GDGTs), tend to become abundant below 100 mbsf (meters below sea floor). Tricyclic biphytane (BP[3]; which is a robust biomarker derived from GDGT), crenarchaeol, and other BPs exhibit d13C values of ca. -20 per mil, and become abundant between 130 and 230 mbsf at Site U1328. In this depth range, concentrations of ammonium and phosphate in interstitial waters also increase, suggesting that a larger population and higher activity of heterotrophic community consisting of crenarchaeota and other archaea decompose the sedimentary organic matter, thereby liberating ammonium and phosphate. Such crenarchaeotic activity can produce other metabolic products such as molecular hydrogen by fermentation of organic matter during diagenesis. Furthermore, near the organic matter decomposition zone (130 to 230 mbsf), a probable methanogen biomarker (13C-depleted BP[1] with d13C values as low as -48.8 per mil) becomes abundant, indicating that methanogens utilize these diagenetic products. The molecular and isotopic distributions of archaeal lipid biomarkers indicate that the archaeal community plays an important role in the biogeochemical cycles of deep-sea sediments, including both methanogenesis and nutrient recycling.
Resumo:
The mid-Cretaceous is thought to be a greenhouse world with significantly higher atmospheric pCO2 and sea-surface temperatures as well as a much flatter latitudinal thermal gradient compared to the present. This time interval was punctuated by the Cenomanian/Turonian Oceanic Anoxic Event (OAE-2, ~ 93.5 Myr ago), an episode of global, massive organic carbon burial that likely resulted in a large and abrupt pCO2 decline. However, the climatic consequences of this pCO2 drop are yet poorly constrained. We determined the first, high-resolution sea-surface temperature (SST) record across OAE-2 from a deep-marine sedimentary sequence at Ocean Drilling Program (ODP) Site 1276 in the mid-latitudinal Newfoundland Basin, NW Atlantic. By employing the organic palaeothermometer TEX86, we found that SSTs across the OAE-2 interval were extremely high, but were punctuated by a remarkably large cooling (5-11 °C), which is synchronous with the 2.5-5.5 °C cooling in SST records from equatorial Atlantic sites, and the "Plenus Cold Event". Because this global cooling event is concurrent with increased organic carbon burial, it likely acted in response to the associated pCO2 drop. Our findings imply a substantial increase in the latitudinal SST gradient in the proto-North Atlantic during this period of global cooling and reduced atmospheric pCO2, suggesting a strong coupling between pCO2 and latitudinal thermal gradients under greenhouse climate conditions.