988 resultados para 14Carbon uptake per cell rate


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biological parameters of five Trypanosoma cruzi strains from different sources were determined in order to know the laboratory behaviour of natural populations. The parameters evaluated were growth kinetics of epimastigotes, differentiation into metacyclic forms, infectivity in mammalian cells grown in vitro and parasite susceptibility to nifurtimox, benznidazole and gentian violet. Differences in transformation to metacyclic, in the percentage of infected cells as well as in the number of amastigotes per cell were observed among the strains. Regarding to pharmacological assays, Y strain was the most sensitive to the three assayed compounds. These data demonstrate the heterogeneity of natural populations of T. cruzi, the only responsible of infection in humans.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study examined the validity and reliability of a sequential "Run-Bike-Run" test (RBR) in age-group triathletes. Eight Olympic distance (OD) specialists (age 30.0 ± 2.0 years, mass 75.6 ± 1.6 kg, run VO2max 63.8 ± 1.9 ml· kg(-1)· min(-1), cycle VO2peak 56.7 ± 5.1 ml· kg(-1)· min(-1)) performed four trials over 10 days. Trial 1 (TRVO2max) was an incremental treadmill running test. Trials 2 and 3 (RBR1 and RBR2) involved: 1) a 7-min run at 15 km· h(-1) (R1) plus a 1-min transition to 2) cycling to fatigue (2 W· kg(-1) body mass then 30 W each 3 min); 3) 10-min cycling at 3 W· kg(-1) (Bsubmax); another 1-min transition and 4) a second 7-min run at 15 km· h(-1) (R2). Trial 4 (TT) was a 30-min cycle - 20-min run time trial. No significant differences in absolute oxygen uptake (VO2), heart rate (HR), or blood lactate concentration ([BLA]) were evidenced between RBR1 and RBR2. For all measured physiological variables, the limits of agreement were similar, and the mean differences were physiologically unimportant, between trials. Low levels of test-retest error (i.e. ICC <0.8, CV<10%) were observed for most (logged) measurements. However [BLA] post R1 (ICC 0.87, CV 25.1%), [BLA] post Bsubmax (ICC 0.99, CV 16.31) and [BLA] post R2 (ICC 0.51, CV 22.9%) were least reliable. These error ranges may help coaches detect real changes in training status over time. Moreover, RBR test variables can be used to predict discipline specific and overall TT performance. Cycle VO2peak, cycle peak power output, and the change between R1 and R2 (deltaR1R2) in [BLA] were most highly related to overall TT distance (r = 0.89, p < 0. 01; r = 0.94, p < 0.02; r = 0.86, p < 0.05, respectively). The percentage of TR VO2max at 15 km· h(-1), and deltaR1R2 HR, were also related to run TT distance (r = -0.83 and 0.86, both p < 0.05).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The initiation of chromosome replication is tightly regulated in bacteria to ensure that it takes place only once per cell cycle. In many proteobacteria, this process requires the ATP-bound form of the DnaA protein. The regulatory inactivation of DnaA (RIDA) facilitates the conversion of DnaA-ATP into replication-inactive DnaA-ADP, thereby preventing overinitiation. Homologues of the HdaA protein, together with the β-clamp of the DNA polymerase (DnaN), are required for this process. Here, we used fluorescence resonance energy transfer experiments to demonstrate that HdaA interacts with DnaN in live Caulobacter crescentus cells. We show that a QFKLPL motif in the N-terminal region of HdaA is required for this interaction and that this motif is also needed to recruit HdaA to the subcellular location occupied by the replisome during DNA replication. An HdaA mutant protein that cannot colocalize or interact with DnaN can also not support the essential function of HdaA. These results suggest that the recruitment of HdaA to the replisome is needed during RIDA in C. crescentus, probably as a means to sense whether chromosome replication has initiated before DnaA becomes inactivated. In addition, we show that a conserved R145 residue located in the AAA+ domain of HdaA is also needed for the function of HdaA, although it does not affect the interaction of HdaA with DnaN in vivo. The AAA+ domain of HdaA may therefore be required during RIDA after the initial recruitment of HdaA to the replisome by DnaN.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The activity of five (1-5) abietane phenol derivatives against Leishmania infantum and Leishmania braziliensis was studied using promastigotes and axenic and intracellular amastigotes. Infectivity and cytotoxicity tests were performed with J774.2 macrophage cells using Glucantime as a reference drug. The mechanisms of action were analysed by performing metabolite excretion and transmission electron microscopy ultrastructural studies. Compounds 1-5 were more active and less toxic than Glucantime. The infection rates and mean number of parasites per cell observed in amastigote experiments showed that derivatives 2, 4 and 5 were the most effective against both L. infantum and L. braziliensis. The ultrastructural changes observed in the treated promastigote forms confirmed that the greatest cell damage was caused by the most active compound (4). Only compound 5 caused changes in the nature and amounts of catabolites excreted by the parasites, as measured by ¹H nuclear magnetic resonance spectroscopy. All of the assayed compounds were active against the two Leishmania species in vitro and were less toxic in mammalian cells than the reference drug.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract: The centrosome is the major microtubule organizing center (MTOC) of most animal cells. As such, it is essential for a number of processes, including polarized secretion or bipolar spindle assembly. Hence, centrosome number needs to be controlled precisely in coordination with DNA replication. Cells early in the cell cycle contain one centrosome that duplicates during S-phase to give rise to two centrosomes that organize a bipolar spindle during mitosis. A failure in this process is likely to engage the spindle assembly checkpoint and threaten genome stability. Despite its importance for normal and uncontrolled proliferation the mechanisms underlying centrosome duplication are still unclear. The Caenorhabditis elegans embryo is well suited to study the mechanisms of centrosome duplication. It allows for the analysis of cellular processes with high temporal and spatial resolution. Gene identification and inactivation techniques are very powerful and a wide set of mutant and transgenic strains facilitates analysis. My thesis project consisted of characterizing three sas-genes: sas-4, sas-5 and sas-¬6. Embryos lacking these genes fail to form a bipolar spindle, hence their name (spindle assembly). I established that sas-4(RNAi) and sas-6(RNAi) embryos do not form daughter centrioles and thus do not duplicate their centrosomes. Furthermore, I showed that both proteins localize to the cytoplasm and are strikingly enriched at centrioles throughout the cell cycle. By performing fluorescent recovery after photobleaching (FRAP) experiments and differentially labeling centrioles, I established that both proteins are recruited to centrioles once per cell cycle when daughter centrioles form. In contrast, SAS-5, PLK-1 and SPD-2 shuttle permanently between the cytoplasm and centrioles. By showing that SAS-5 and SAS-6 interact in vivo, I established a functional relationship between the proteins. Testing the putative human homologue of SAS-6 (HsSAS-6) and a distant relative of SAS-4 (CPAP), I was able to show that these proteins are required for centrosome duplication in human cells. In addition I found that overexpression of GFP¬HsSAS-6 leads to formation of extra centrosomes. In conclusion, we identified and gained important insights into proteins required for centrosome duplication in C. elegans and in human cells. Thus, our work contributes to further elucidate an important step of cell division in normal and malignant tissues. Eventually, this may allow for the development of novel diagnostic or therapeutic reagents to treat cancer patients. Résumé: Le centrosome est le principal centre organisateur des microtubules dans les cellules animales. De ce fait, il est essentiel pour un certain nombre de processus, comme l'adressage polarisé ou la mise en place d'un fuseau bipolaire. Le nombre de centrosome doit être contrôlé de façon précise et en coordination avec la réplication de l'ADN. Au début du cycle cellulaire, les cellules n'ont qu'un seul centrosome qui se duplique au cours de la phase S pour donner naissance à deux centrosomes qui forment le fuseau bipolaire pendant la mitose. Des défauts dans ce processus déclencheront probablement le "checkpoint" d'assemblage du fuseau et menaceront la stabilité du génome. Malgré leurs importances pour la prolifération normale ou incontrôlée des cellules, les mécanismes gouvernant la duplication des centrosomes restent obscures. L'embryon de Caenorhabditis elegans est bien adapté pour étudier les mécanismes de duplication des centrosomes. Il permet l'analyse des processus cellulaires avec une haute résolution spatiale et temporelle. L'identification des gènes et les techniques d'inactivation sont très puissantes et de larges collections de mutants et de lignées transgéniques facilitent les analyses. Mon projet de thèse a consisté à caractérisé trois gènes: sas-4, sas-5 et sas-6. Les embryons ne possédant pas ces gènes ne forment pas de fuseaux bipolaires, d'où leur nom (spindle assembly). J'ai établi que les embryons sas-4(RNAi) et sas-6(RNAi) ne forment pas de centrioles fils, et donc ne dupliquent pas leur centrosome. De plus, j'ai montré que les deux protéines sont localisées dans le cytoplasme et sont étonnamment enrichies aux centrioles tout le long du cycle cellulaire. En réalisant des expériences de FRAP (fluorscence recovery after photobleaching) et en marquant différentiellement les centrioles, j'ai établi que ces deux protéines sont recrutées une fois par cycle cellulaire aux centrioles, au moment de la duplication. Au contraire, SAS-5, PLK-1 et SPD-2 oscillent en permanence entre le cytoplasme et les centrioles. En montrant que SAS-5 et SAS-6 interagissent in vivo, j'ai établi une relation fonctionnelle entre les deux protéines. En testant les homologues humains putatifs de SAS-6 (HsSAS-6) et de SAS-4 (CPAP), j'ai été capable de montrer que ces protéines étaient aussi requises pour la duplication des centrosomes dans les cellules humaines. De plus, j'ai montré que la surexpression de GFP-HsSAS-6 entrainait la formation de centrosomes surnuméraires. En conclusion, nous avons identifié et progressé dans la compréhension de protéines requises pour la duplication des centrosomes chez C. elegans et dans les cellules humaines. Ainsi, notre travail contribue à mieux élucider une étape importante du la division cellulaire dans les cellules normales et malignes. A terme, ceci devrait aider au développement de nouveaux diagnostics ou de traitements thérapeuthiques pour soigner les malades du cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neuropeptide Y (NPY) is a 36 amino acid peptide present in the central and peripheral nervous system. Numerous studies point to a role of NPY in cardiovascular regulation. NPY effects are mediated through stimulation of specific cell surface G protein-coupled receptors. To allow biochemical studies of the receptor and of its interaction with the ligand, we have developed a potent expression system for NPY receptors using a recombinant vaccinia virus. A human NPY receptor cDNA was fused to a strong vaccinia virus promoter and inserted into the viral genome by homologous recombination. Recombinant viruses were isolated and tested for their ability to induce NPY binding site expression following infection of mammalian cell lines. Using saturation and competition binding experiments we measured a Bmax of 5-10 x 10(6) NPY binding sites per cell. The Kd for the binding of NPY is about 20 nM. Labelling of infected cells with a fluorochrome-labelled NPY indicated that the recombinant protein integrates into the cell membrane.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: In the radiopharmaceutical therapy approach to the fight against cancer, in particular when it comes to translating laboratory results to the clinical setting, modeling has served as an invaluable tool for guidance and for understanding the processes operating at the cellular level and how these relate to macroscopic observables. Tumor control probability (TCP) is the dosimetric end point quantity of choice which relates to experimental and clinical data: it requires knowledge of individual cellular absorbed doses since it depends on the assessment of the treatment's ability to kill each and every cell. Macroscopic tumors, seen in both clinical and experimental studies, contain too many cells to be modeled individually in Monte Carlo simulation; yet, in particular for low ratios of decays to cells, a cell-based model that does not smooth away statistical considerations associated with low activity is a necessity. The authors present here an adaptation of the simple sphere-based model from which cellular level dosimetry for macroscopic tumors and their end point quantities, such as TCP, may be extrapolated more reliably. METHODS: Ten homogenous spheres representing tumors of different sizes were constructed in GEANT4. The radionuclide 131I was randomly allowed to decay for each model size and for seven different ratios of number of decays to number of cells, N(r): 1000, 500, 200, 100, 50, 20, and 10 decays per cell. The deposited energy was collected in radial bins and divided by the bin mass to obtain the average bin absorbed dose. To simulate a cellular model, the number of cells present in each bin was calculated and an absorbed dose attributed to each cell equal to the bin average absorbed dose with a randomly determined adjustment based on a Gaussian probability distribution with a width equal to the statistical uncertainty consistent with the ratio of decays to cells, i.e., equal to Nr-1/2. From dose volume histograms the surviving fraction of cells, equivalent uniform dose (EUD), and TCP for the different scenarios were calculated. Comparably sized spherical models containing individual spherical cells (15 microm diameter) in hexagonal lattices were constructed, and Monte Carlo simulations were executed for all the same previous scenarios. The dosimetric quantities were calculated and compared to the adjusted simple sphere model results. The model was then applied to the Bortezomib-induced enzyme-targeted radiotherapy (BETR) strategy of targeting Epstein-Barr virus (EBV)-expressing cancers. RESULTS: The TCP values were comparable to within 2% between the adjusted simple sphere and full cellular models. Additionally, models were generated for a nonuniform distribution of activity, and results were compared between the adjusted spherical and cellular models with similar comparability. The TCP values from the experimental macroscopic tumor results were consistent with the experimental observations for BETR-treated 1 g EBV-expressing lymphoma tumors in mice. CONCLUSIONS: The adjusted spherical model presented here provides more accurate TCP values than simple spheres, on par with full cellular Monte Carlo simulations while maintaining the simplicity of the simple sphere model. This model provides a basis for complementing and understanding laboratory and clinical results pertaining to radiopharmaceutical therapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Current nuclear medicine techniques for the localization of inflammatory processes are based on injection of 111In labelled autologous granulocytes which need to be isolated and radiolabelled in vitro before reinjection. A new technique is presented here that obviates the need for cell isolation by the direct intravenous injection of a granulocyte specific 123I labelled monoclonal antibody. In this publication the basic parameters of the antibody granulocyte interaction are described. Antibody binding does not inhibit vital functions of the granulocytes, such as chemotaxis and superoxide generation. Scatchard analysis of binding data reveals an apparent affinity of the antibody for granulocytes of 6.8 X 10(9) l/mol and approximately 7.1 X 10(4) binding sites per cell. Due to the high specificity of the antibody, the only expected interference is from CEA producing tumors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

r/K theory classically predicts that offspring size should increase under density-dependent selection. However, this is questionable, being based on implicit rather than explicit assumption (the logistic model does not include offsring size as a parameter). From recent models of optimal offspring size (Sibly & Calow, 1983; Taylor & Williams, 1984) it can be shown that density should select for larger offspring if density-dependence in the per capita rate of increase is mainly due to a reduction of the juvenile growth rate or survivorship. In contrast, density should select for smaller offspring if such density-dependence is mainly due to a reduction of adult fecundity or survivorship. Therfore, the outcome of selection cannot be predicted without precise knowledge of the density-dependence of age-specific reproduction and mortality rates. To test the above models, genetically identical individuals of Simocephalus vetulus (Müller) were reared in a density gradient; density-dependence in the per capita rate of increase was shown to be mainly due to a reduction of the juvenile growth rate, thereby selecting for larger offspring; offspring size at birth appeared to be phenotypically plastic and to increase with density. Models were therefore qualitatively supported. However, a discrepancy occurred in quantitative predictions; offspring were produced larger than predicted. Field and laboratory studies are suggested to address this.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cardiac morphogenesis and function are known to depend on both aerobic and anaerobic energy-producing pathways. However, the relative contribution of mitochondrial oxidation and glycogenolysis, as well as the determining factors of oxygen demand in the distinct chambers of the embryonic heart, remains to be investigated. Spontaneously beating hearts isolated from stage 11, 20, and 24HH chick embryos were maintained in vitro under controlled metabolic conditions. O(2) uptake and glycogenolytic rate were determined in atrium, ventricle, and conotruncus in the absence or presence of glucose. Oxidative capacity ranged from 0.2 to 0.5 nmol O(2)/(h.microg protein), did not depend on exogenous glucose, and was the highest in atria at stage 20HH. However, the highest reserves of oxidative capacity, assessed by mitochondrial uncoupling, were found at the youngest stage and in conotruncus, representing 75 to 130% of the control values. At stage 24HH, glycogenolysis in glucose-free medium was 0.22, 0.17, and 0.04 nmol glucose U(h.microg protein) in atrium, ventricle, and conotruncus, respectively. Mechanical loading of the ventricle increased its oxidative capacity by 62% without altering glycogenolysis or lactate production. Blockade of glycolysis by iodoacetate suppressed lactate production but modified neither O(2) nor glycogen consumption in substrate-free medium. These findings indicate that atrium is the cardiac chamber that best utilizes its oxidative and glycogenolytic capacities and that ventricular wall stretch represents an early and major determinant of the O(2) uptake. Moreover, the fact that O(2) and glycogen consumptions were not affected by inhibition of glyceraldehyde-3-phosphate dehydrogenase provides indirect evidence for an active glycerol-phosphate shuttle in the embryonic cardiomyocytes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DnaA is a conserved essential bacterial protein that acts as the initiator of chromosomal replication as well as a master transcriptional regulator in Caulobacter crescentus. Thus, the intracellular levels of active DnaA need to be tightly regulated during the cell cycle. Our previous work suggested that DnaA may be regulated at the level of its activity by the replisome-associated protein HdaA. Here, we describe the construction of a mutant DnaA protein [DnaA(R357A)]. The R357 residue in the AAA+ domain of the C. crescentus DnaA protein is equivalent to the R334 residue of the E. coli DnaA protein, which is required for the Regulatory Inactivation of DnaA (RIDA). We found that the expression of the DnaA(R357A) mutant protein in C. crescentus, but not the expression of the wild-type DnaA protein at similar levels, causes a severe phenotype of over-initiation of chromosomal replication and that it blocks cell division. Thus, the mutant DnaA(R357A) protein is hyper-active to promote the initiation of DNA replication, compared to the wild-type DnaA protein. DnaA(R357A) could not replace DnaA in vivo, indicating that the switch in DnaA activity once chromosomal replication has started may be an essential process in C. crescentus. We propose that the inactivation of DnaA is the main mechanism ensuring that chromosomal replication starts only once per cell cycle. We further observed that the R357A substitution in DnaA does not promote the activity of DnaA as a direct transcriptional activator of four important genes, encoding HdaA, the GcrA master cell cycle regulator, the FtsZ cell division protein and the MipZ spatial regulator of cell division. Thus, the AAA+ domain of DnaA may play a role in temporally regulating the bifunctionality of DnaA by reallocating DnaA molecules from initiating DNA replication to transcribing genes within the unique DnaA regulon of C. crescentus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: Studies on large animal models are an important step to test new therapeutical strategies before human application. Considering the importance of cone function for human vision and the paucity of large animal models for cone dystrophies having an enriched cone region, we propose to develop a pig model for cone degeneration. With a lentiviral-directed transgenesis, we obtained pigs transgenic for a cone-dominant mutant gene described in a human cone dystrophy.Methods: Lentiviral vectors encoding the human double mutant GUCY2DE837D/R838S cDNA under the control of a region of the pig arrestin-3 promoter (Arr3) was produced and used for lentiviral-derived transgenesis in pigs. PCR-genotyping and southern blotting determined the genotype of pigs born after injection of the vector at the zygote stage. Retina function analysis was performed by ERG and behavioral tests at 11, 24 and 54 weeks of age. OCT and histological analyses were performed to describe the retina morphology.Results: The ratio of transgenic pigs born after lentiviral-directed transgenesis was close to 50%. Transgenic pigs with 3 to 5 transgene copies per cell clearly present a reduced photopic response from 3 months of age on. Except for one pig, which has 6 integrated transgene copies, no dramatic decrease in general mobility was observed even at 6 months of age. OCT examinations reveal no major changes in the ONL structure of the 6-months old pigs. The retina morphology was well conserved in the 2 pigs sacrificed (3 and 6 months old) except a noticeable displacement of some cone nuclei in the outer segment layer.Conclusions: Lentiviral-directed transgenesis is a rapid and straightforward method to engineer transgenic pigs. Some Arr3-GUCY2DE837D/R838S pigs show signs of retinal dysfunction but further work is needed to describe the progression of the disease in this model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chromosome replication in Caulobacter crescentus is tightly regulated to ensure that initiation occurs at the right time and only once during the cell cycle. The timing of replication initiation is controlled by both CtrA and DnaA. CtrA binds to and silences the origin. Upon the clearance of CtrA from the cell, the DnaA protein accumulates and allows loading of the replisome at the origin. Here, we identify an additional layer of replication initiation control that is mediated by the HdaA protein. In Escherichia coli, the Hda protein inactivates DnaA after replication initiation. We show that the Caulobacter HdaA homologue is necessary to restrict the initiation of DNA replication to only once per cell cycle and that it dynamically colocalizes with the replisome throughout the cell cycle. Moreover, the transcription of hdaA is directly activated by DnaA, providing a robust feedback regulatory mechanism that adjusts the levels of HdaA to inactivate DnaA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: In the radiopharmaceutical therapy approach to the fight against cancer, in particular when it comes to translating laboratory results to the clinical setting, modeling has served as an invaluable tool for guidance and for understanding the processes operating at the cellular level and how these relate to macroscopic observables. Tumor control probability (TCP) is the dosimetric end point quantity of choice which relates to experimental and clinical data: it requires knowledge of individual cellular absorbed doses since it depends on the assessment of the treatment's ability to kill each and every cell. Macroscopic tumors, seen in both clinical and experimental studies, contain too many cells to be modeled individually in Monte Carlo simulation; yet, in particular for low ratios of decays to cells, a cell-based model that does not smooth away statistical considerations associated with low activity is a necessity. The authors present here an adaptation of the simple sphere-based model from which cellular level dosimetry for macroscopic tumors and their end point quantities, such as TCP, may be extrapolated more reliably. METHODS: Ten homogenous spheres representing tumors of different sizes were constructed in GEANT4. The radionuclide 131I was randomly allowed to decay for each model size and for seven different ratios of number of decays to number of cells, N(r): 1000, 500, 200, 100, 50, 20, and 10 decays per cell. The deposited energy was collected in radial bins and divided by the bin mass to obtain the average bin absorbed dose. To simulate a cellular model, the number of cells present in each bin was calculated and an absorbed dose attributed to each cell equal to the bin average absorbed dose with a randomly determined adjustment based on a Gaussian probability distribution with a width equal to the statistical uncertainty consistent with the ratio of decays to cells, i.e., equal to Nr-1/2. From dose volume histograms the surviving fraction of cells, equivalent uniform dose (EUD), and TCP for the different scenarios were calculated. Comparably sized spherical models containing individual spherical cells (15 microm diameter) in hexagonal lattices were constructed, and Monte Carlo simulations were executed for all the same previous scenarios. The dosimetric quantities were calculated and compared to the adjusted simple sphere model results. The model was then applied to the Bortezomib-induced enzyme-targeted radiotherapy (BETR) strategy of targeting Epstein-Barr virus (EBV)-expressing cancers. RESULTS: The TCP values were comparable to within 2% between the adjusted simple sphere and full cellular models. Additionally, models were generated for a nonuniform distribution of activity, and results were compared between the adjusted spherical and cellular models with similar comparability. The TCP values from the experimental macroscopic tumor results were consistent with the experimental observations for BETR-treated 1 g EBV-expressing lymphoma tumors in mice. CONCLUSIONS: The adjusted spherical model presented here provides more accurate TCP values than simple spheres, on par with full cellular Monte Carlo simulations while maintaining the simplicity of the simple sphere model. This model provides a basis for complementing and understanding laboratory and clinical results pertaining to radiopharmaceutical therapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dopamine antagonist [3H]-domperidone-[3H]-DOM-bound to a single class of high-affinity (Kd = 1.24 +/- 0.14 nM) and saturable receptors on dispersed bovine anterior pituitary (AP) cells. The binding of [3H]-DOM was stereoselective and reversible with agonists and antagonists. Dopamine competitions for [3H]-DOM binding modeled best for a single site consistent with an interaction with a homogeneous population of receptors. The mean number of specific binding sites labeled by [3H]-DOM was 53,000 per cell in dispersed AP cells consisting of 42% lactotrophs. Dispersed bovine AP cells attached to extracellular matrix within 3 h, and prolactin secretion from these cells was effectively inhibited by dopamine. Several observations suggested that [3H]-DOM-labeled receptors on dispersed bovine AP cells were restricted to the outer plasma membrane and not internalized. These included (1) the rapid and complete dissociation of specific [3H]-DOM binding; (2) the ability of treatment with acid or proteolytic enzymes to entirely remove specifically bound [3H]-DOM, and (3) the lack of effect of metabolic inhibitors on specific [3H]-DOM binding.