997 resultados para 119-744
Resumo:
Ephemeral polar glaciations during the middle-to-late Eocene (48-34 Ma) have been proposed based on far-field ice volume proxy records and near-field glacigenic sediments, although the scale, timing, and duration of these events are poorly constrained. Here we confirm the existence of a transient cool event within a new high-resolution benthic foraminiferal d18O record at Ocean Drilling Program (ODP) Site 738 (Kerguelen Plateau; Southern Ocean). This event, named the Priabonian oxygen isotope maximum (PrOM) Event, lasted ~140 kyr and is tentatively placed within magnetochron C17n.1n (~37.3 Ma) based on the correlation to ODP Site 689 (Maud Rise, Southern Ocean). A contemporaneous change in the provenance of sediments delivered to the Kerguelen Plateau occurs at the study site, determined from the <63 µm fraction of decarbonated and reductively leached sediment samples. Changes in the mixture of bottom waters, based on fossil fish tooth epsilon-Nd, were less pronounced and slower relative to the benthic d18O and terrigenous epsilon-Nd changes. Terrigenous sediment epsilon-Nd values rapidly shifted to less radiogenic signatures at the onset of the PrOM Event, indicating an abrupt change in provenance favoring ancient sources such as the Paleoproterozoic East Antarctic craton. Bottom water epsilon-Nd reached a minimum value during the PrOM Event, although the shift begins much earlier than the terrigenous epsilon-Nd excursion. The origin of the abrupt change in terrigenous sediment provenance is compatible with a change in Antarctic terrigenous sediment flux and/or source as opposed to a reorganization of ocean currents. A change in terrigenous flux and/or source of Antarctic sediments during the oxygen isotope maximum suggests a combination of cooling and ice growth in East Antarctica during the early late Eocene.
Resumo:
Paleogene stable oxygen and carbon isotopes were measured in formainifera from ODP Sites 689 and 690 at Maud Rise in the Atlantic Ocean sector of the Southern Ocean, and from Sites 738, 744, 748 and 749 at the southern Kerguelen Plateau in the Indian Ocean sector. These data were compared with sedimentological data from the same sample set. Both benthic and planktic d18O values document a cooling trend beginning around 49.5 Ma at all sites. During the late middle Eocene planktic d18O values indicate a steepening latitudinal temperature gradient from 14°C at the northern sites towards 10°C at the southernmost sites. Terrigeneous sand grains of probably ice rafted origin and clay mineral assemblages point to the existence of a limited East Antarctic ice cap with some glaciers reaching sea level as early as middle Eocene time around 45.5 Ma. Between 45 and 40 Ma, average paleotemperatures were between 5° and 7°C in deep and intermediate water masses, while near-surface water masses ranged between 6° and 10°C. During the late Eocene, between 40 and 36 Ma, average temperatures further decreased to 4°-5°C in the deep and intermediate water masses and to 5°-8°C near the sea surface. Abruptly increasing d18O values at approximately 35.9 Ma exactly correlate with a sharp pulse in the deposition of ice-rafted material on the Kerguelen Plateau, a dramatic change in clay mineral composition, and an altered Southern Ocean circulation indicated by a differentiation of benthic d13C values between sites, increasing opal concentrations and decreasing carbonate contents. For planktic and benthic foraminifera this d18O increase ranges between 1.0 and 1.3 per mil, and between 0.9 and 1.4 per mil, respectively. We favour a hypothesis that explains most of the d18O shift at 35.9 Ma with a buildup of a continental East Antarctic ice sheet. Consequently, relatively warm Oligocene Antarctic surface water temperatures probably are explained by a temperate, wet-based nature of the ice sheet. This would also aid in the fast build-up of an ice sheet by enhancing the moisture transport on to the continent.
Resumo:
Synthetic seismograms provide a crucial link between lithologic variations within a drill hole and reflectors on seismic profiles crossing the site. In essence, they provide a ground-truth for the interpretation of seismic data. Using a combination of core and logging data, we created synthetic seismograms for Ocean Drilling Program Sites 1165 and 1166, drilled during Leg 188, and Site 742, drilled during Leg 119, all in Prydz Bay, Antarctica. Results from Site 1165 suggest that coring penetrated a target reflector initially thought to represent the onset of drift sedimentation, but the lithologic change across the boundary does not show a change from predrift to drift sediments. The origin of a shallow reflector packet in the seismic line across Site 1166 and a line connecting Sites 1166 and 742 was resolved into its constituent sources, as this reflector occurs in a region of large-scale, narrowly spaced impedance changes. Furthermore, Site 1166 was situated in a fluvio-deltaic system with widely variable geology, and bed thickness changes were estimated between the site and both seismic lines.
Resumo:
We report an optimized method for extracting neodymium (Nd) from fossil fish teeth with a single-stage column (125 µl stem volume; LN Resin, Eichrom Industries, Darien Illinois) for isotopic analysis by multi-collector inductively coupled mass spectrometry (MC-ICMPS). Three reference materials (basalt: BCR-2, BHVO-2; phosphate: fossil bone composite) and splits of fossil fish teeth samples previously processed with existing two-stage column methods were processed using the single-stage column method. 143Nd/144Nd values of reference materials agree within error with published values, and the values for fish teeth correspond with sample splits processed with two-stage columns. Precision to ± ~0.23 epsilon-Nd was achieved for 30 ng Nd samples of reference materials, and Nd isotope measurements of fossil fish tooth sample replicates as small as 7 ng Nd were reproducible within long term instrumental uncertainty. We demonstrate the utility of the new method with the first high resolution Nd isotope record spanning the ~40.0 Ma middle Eocene Climatic Optimum, which shows an excursion of 0.65 epsilon-Nd during the peak warming at the study site (Ocean Drilling Program Leg 119, Site 738; 30 kyr sample spacing from 40.3 to 39.6 Ma). LN Resin is already used in standard methods for separating Nd, and Nd isotopes are routinely measured by MC-ICPMS with high efficiency inlet systems. Our innovation is a single, small volume LN Resin column for Nd separation. The streamlined approach results in a 10X increase in sample throughput.