945 resultados para S°, expressed as SO3
Resumo:
Winter dormancy is the strategy used by perennial plants to survive the harsh conditions of winter in temperate and cold regions. This complex mechanism is characterized by cessation of the meristems activity, which is accompanied by the budset, the acquisition of a high tolerance to the cold temperatures and, in the case of deciduous trees, by the senescence and leaf abscission. In long-lived forest species, the length of the dormancy period limits the growing season, affecting wood production and quality. A Suppression Subtractive Hybridization (SSH) enriched in genes overexpressed during the process of winter dormancy in chesnut stems identified a DNA glycosylase gene. In order to study its role in the establishment and maintenance of the winter dormancy, a molecular characterization and seasonal expression were performed. Furthermore, we have obtained poplar transgenic plantlets overexpressing the chesnut gene.
Resumo:
A serpin was identified in normal mammary gland by differential cDNA sequencing. In situ hybridization has detected this serpin exclusively in the myoepithelial cells on the normal and noninvasive mammary epithelial side of the basement membrane and thus was named myoepithelium-derived serine proteinase inhibitor (MEPI). No MEPI expression was detected in the malignant breast carcinomas. MEPI encodes a 405-aa precursor, including an 18-residue secretion signal with a calculated molecular mass of 46 kDa. The predicted sequence of the new protein shares 33% sequence identity and 58% sequence similarity to plasminogen activator inhibitor (PAI)-1 and PAI-2. To determine whether MEPI can modulate the in vivo growth and progression of human breast cancers, we transfected a full-length MEPI cDNA into human breast cancer cells and studied the orthotopic growth of MEPI-transfected vs. control clones in the mammary fat pad of athymic nude mice. Overexpression of MEPI inhibited the invasion of the cells in the in vitro invasion assay. When injected orthotopically into nude mice, the primary tumor volumes, axillary lymph node metastasis, and lung metastasis were significantly inhibited in MEPI-transfected clones as compared with controls. The expression of MEPI in myoepithelial cells may prevent breast cancer malignant progression leading to metastasis.
Resumo:
Transgenic expression of the influenza virus hemagglutinin (HA) in the pancreatic islet cells of InsHA mice leads to peripheral tolerance of HA-specific T cells. To examine the onset of tolerance, InsHA mice were immunized with influenza virus A/PR/8 at different ages, and the presence of nontolerant T cells was determined by the induction of autoimmune diabetes. The data revealed a neonatal period wherein T cells were not tolerant and influenza virus infection led to HA-specific cell destruction and autoimmune diabetes. The ability to induce autoimmunity gradually waned, such that adult mice were profoundly tolerant to viral HA and were protected from diabetes. Because cross-presentation of islet antigens by professional antigen-presenting cells had been reported to induce peripheral tolerance, the temporal relationship between tolerance induction and activation of HA-specific T cells in the lymph nodes draining the pancreas was examined. In tolerant adult mice, but not in 1-week-old neonates, activation and proliferation of HA-specific CD8+ T cells occurred in the pancreatic lymph nodes. Thus, lack of tolerance in the perinatal period correlated with lack of activation of antigen-specific CD8+ T cells. This work provides evidence for the developmental regulation of peripheral tolerance induction.
Resumo:
Phosphorylation of Ser-627 is both necessary and sufficient for full activity of the expressed 35-kDa catalytic domain of myosin I heavy chain kinase (MIHCK). Ser-627 lies in the variable loop between highly conserved residues DFG and APE at a position at which a phosphorylated Ser/Thr also occurs in many other Ser/Thr protein kinases. The variable loop of MIHCK contains two other hydroxyamino acids: Thr-631, which is conserved in almost all Ser/Thr kinases, and Thr-632, which is not conserved. We determined the effects on the kinase activity of the expressed catalytic domain of mutating Ser-627, Thr-631, and Thr-632 individually to Ala, Asp, and Glu. The S627A mutant was substantially less active than wild type (wt), with a lower kcat and higher Km for both peptide substrate and ATP, but was more active than unphosphorylated wt. The S627D and S627E mutants were also less active than phosphorylated wt, i.e., acidic amino acids cannot substitute for phospho-Ser-627. The activity of the T631A mutant was as low as that of the S627A mutant, whereas the T632A mutant was as active as phosphorylated wt, indicating that highly conserved Thr-631, although not phosphorylated, is essential for catalytic activity. Asp and Glu substitutions for Thr-631 and Thr-632 were inhibitory to various degrees. Molecular modeling indicated that Thr-631 can hydrogen bond with conserved residue Asp-591 in the catalytic loop and that similar interactions are possible for other kinases whose activities also are regulated by phosphorylation in the variable loop. Thus, this conserved Thr residue may be essential for the activities of other Ser/Thr protein kinases as well as for the activity of MIHCK.
Resumo:
Sensory transduction in olfactory neurons involves the activation of a cyclic nucleotide-gated (CNG) channel by cAMP. Previous studies identified a CNG channel subunit (CNG2) and a subunit (CNG5), which when heterologously expressed form a channel with properties similar but not identical to those of native olfactory neurons. We have cloned a new type of CNG channel subunit (CNG4.3) from rat olfactory epithelium. CNG4.3 derives from the same gene as the rod photoreceptor subunit (CNG4.1) but lacks the long, glutamic acid-rich domain found in the N terminus of CNG4.1. Northern blot and in situ hybridization revealed that CNG4.3 is expressed specifically in olfactory neurons. Expression of CNG4.3 in human embryonic kidney 293 cells did not lead to detectable currents. Coexpression of CNG4.3 with CNG2 induced a current with significantly increased sensitivity for cAMP whereas cGMP affinity was not altered. Additionally, CNG4.3 weakened the outward rectification of the current in the presence of extracellular Ca2+, decreased the relative permeability for Ca2+, and enhanced the sensitivity for l-cis diltiazem. Upon coexpression of CNG2, CNG4.3, and CNG5, a conductance with a cAMP sensitivity greater than that of either the CNG2/CNG4.3 or the CNG2/CNG5 channel and near that of native olfactory channel was observed. Our data suggest that CNG4.3 forms a subunit of the native olfactory CNG channel. The expression of various CNG4 isoforms in retina and olfactory epithelium indicates that the CNG4 subunit may be necessary for normal function of both photoreceptor and olfactory CNG channels.
Resumo:
A protein semisynthesis methodexpressed protein ligationis described that involves the chemoselective addition of a peptide to a recombinant protein. This method was used to ligate a phosphotyrosine peptide to the C terminus of the protein tyrosine kinase C-terminal Src kinase (Csk). By intercepting a thioester generated in the recombinant protein with an N-terminal cysteine containing synthetic peptide, near quantitative chemical ligation of the peptide to the protein was achieved. The semisynthetic tail-phosphorylated Csk showed evidence of an intramolecular phosphotyrosine-Src homology 2 interaction and an unexpected increase in catalytic phosphoryl transfer efficiency toward a physiologically relevant substrate compared with the non-tail-phosphorylated control. This work illustrates that expressed protein ligation is a simple and powerful new method in protein engineering to introduce sequences of unnatural amino acids, posttranslational modifications, and biophysical probes into proteins of any size.
Resumo:
T helper (Th) cells can be categorized according to their cytokine expression. The differential induction of Th cells expressing Th1 and/or Th2 cytokines is key to the regulation of both protective and pathological immune responses. Cytokines are expressed transiently and there is a lack of stably expressed surface molecules, significant for functionally different types of Th cells. Such molecules are of utmost importance for the analysis and selective functional modulation of Th subsets and will provide new therapeutic strategies for the treatment of allergic or autoimmune diseases. To this end, we have identified potential target genes preferentially expressed in Th2 cells, expressing interleukin (IL)-4, IL-5, and/or IL-10, but not interferon-. One such gene, T1/ST2, is expressed stably on both Th2 clones and Th2-polarized cells activated in vivo or in vitro. T1/ST2 expression is independent of induction by IL-4, IL-5, or IL-10. T1/ST2 plays a critical role in Th2 effector function. Administration of either a mAb against T1/ST2 or recombinant T1/ST2 fusion protein attenuates eosinophilic inflammation of the airways and suppresses IL-4 and IL-5 production in vivo following adoptive transfer of Th2 cells.
Resumo:
Enhanced long chain fatty acid synthesis may occur in breast cancer, where it is necessary for tumor growth and predicts a poor prognosis. Spot 14 (S14) is a carbohydrate- and thyroid hormone-inducible nuclear protein specific to liver, adipose, and lactating mammary tissues that functions to activate genes encoding the enzymes of fatty acid synthesis. Amplification of chromosome region 11q13, where the S14 gene (THRSP) resides, also predicts a poor prognosis in breast tumors. We localized the S14 gene between markers D11S906 and D11S937, at the telomeric end of the amplified region at 11q13, and found that it was amplified and expressed in breast cancer-derived cell lines. Moreover, concordant expression of S14 and a key lipogenic enzyme (acetyl-CoA carboxylase) in a panel of primary breast cancer specimens strongly supported a role for S14 as a determinant of tumor lipid metabolism. S14 expression provides a pathophysiological link between two prognostic indicators in breast cancer: enhanced lipogenesis and 11q13 amplification.
Resumo:
Haemophilus influenzae is a major cause of otitis media and other respiratory tract disease in children. The pathogenesis of disease begins with colonization of the upper respiratory mucosa, a process that involves evasion of local immune mechanisms and adherence to epithelial cells. Several studies have demonstrated that human milk is protective against H. influenzae colonization and disease. In the present study, we examined the effect of human milk on the H. influenzae IgA1 protease and Hap adhesin, two autotransported proteins that are presumed to facilitate colonization. Our results demonstrated that human milk lactoferrin efficiently extracted the IgA1 protease preprotein from the bacterial outer membrane. In addition, lactoferrin specifically degraded the Hap adhesin and abolished Hap-mediated adherence. Extraction of IgA1 protease and degradation of Hap were localized to the N-lobe of the bilobed lactoferrin molecule and were inhibited by serine protease inhibitors, suggesting that the lactoferrin N-lobe may contain serine protease activity. Additional experiments revealed no effect of lactoferrin on the H. influenzae P2, P5, and P6 outer-membrane proteins, which are distinguished from IgA1 protease and Hap by the lack of an N-terminal passenger domain or an extracellular linker region. These results suggest that human milk lactoferrin may attenuate the pathogenic potential of H. influenzae by selectively inactivating IgA1 protease and Hap, thereby interfering with colonization. Future studies should examine the therapeutic potential of lactoferrin, perhaps as a supplement in infant formulas.
Resumo:
Apolipoprotein E (apoE) is associated with several classes of plasma lipoproteins and mediates uptake of lipoproteins through its ability to interact with specific cell surface receptors. Besides its role in cardiovascular diseases, accumulating evidence has suggested that apoE could play a role in neurodegenerative diseases, such as Alzheimer disease. In vertebrates, apoA-I is the major protein of high-density lipoprotein. ApoA-I may play an important role in regulating the cholesterol content of peripheral tissues through the reverse cholesterol transport pathway. We have isolated cDNA clones that code for apoE and apoA-I from a zebrafish embryo library. Analysis of the deduced amino acid sequences showed the presence of a region enriched in basic amino acids in zebrafish apoE similar to the lipoprotein receptor-binding region of human apoE. We demonstrated by whole-mount in situ hybridization that apoE and apoA-I genes are highly expressed in the yolk syncytial layer, an extraembryonic structure implicated in embryonic and larval nutrition. ApoE transcripts were also observed in the deep cell layer during blastula stage, in numerous ectodermal derivatives after gastrulation, and after 3 days of development in a limited number of cells both in brain and in the eyes. Our data indicate that apoE can be found in a nonmammalian vertebrate and that the duplication events, from which apoE and apoA-I genes arose, occurred before the divergence of the tetrapod and teleost ancestors. Zebrafish can be used as a simple and useful model for studying the role of apolipoproteins in embryonic and larval nutrition and of apoE in brain morphogenesis and regeneration.
Resumo:
During activation T cells are thought to change their patterns of gene expression dramatically. To find out whether this is true for T cells activated in animals, the patterns of genes expressed in resting T cells and T cells 8 and 48 hr after activation were examined by using Affymetrix gene arrays. Gene arrays gave accurate comparisons of gene expression in the different cell types because the expression of genes known to vary during activation changed as expected. Of the approximately 6,300 genes assessed by the arrays, about one-third were expressed to appreciable extents in any of the T cells tested. Thus, resting T cells express a surprisingly large diversity of genes. The patterns of gene expression changed considerably within 8 hr of T cell activation but returned to a disposition more like that of resting T cells within 48 hr of exposure to antigen. Not unexpectedly, the activated T cells expressed genes associated with cell division at higher levels than resting T cells. The resting T cells expressed a number of cytokine receptor genes and some genes thought to suppress cell division, suggesting that the state of resting T cells is not a passive failure to respond to extant external stimuli.
Resumo:
A systematic screen termed the allelic message display (AMD) was developed for the hunting of imprinted genes. In AMD, differential display PCR is adopted to image allelic expression status of multiple polymorphic transcripts in two parental mouse strains, reciprocal F1 hybrids and pooled backcross progenies. From the displayed patterns, paternally and maternally expressed transcripts can be unequivocally identified. The effectiveness of AMD screening was clearly demonstrated by the identification of a paternally expressed gene Impact on mouse chromosome 18, the predicted product of which belongs to the YCR59c/yigZ hypothetical protein family composed of yeast and bacterial proteins with currently unknown function. In contrast with previous screening methods necessitating positional cloning efforts or generation of parthenogenetic embryos, this approach requires nothing particular but appropriately crossed mice and can be readily applied to any tissues at various developmental stages. Hence, AMD would considerably accelerate the identification of imprinted genes playing pivotal roles in mammalian development and the pathogenesis of various diseases.
Resumo:
The major gibberellin (GA) controlling stem elongation in pea (Pisum sativum L.) is GA1, which is formed from GA20 by 3-hydroxylation. This step, which limits GA1 biosynthesis in pea, is controlled by the Le locus, one of the original Mendelian loci. Mutations in this locus result in dwarfism. We have isolated cDNAs encoding a GA 3-hydroxylase from lines of pea carrying the Le, le, le-3, and led alleles. The cDNA sequences from le and le-3 each contain a base substitution resulting in single amino acid changes relative to the sequence from Le. The cDNA sequence from led, a mutant derived from an le line, contains both the le mutation and a single-base deletion, which causes a shift in reading frame and presumably a null mutation. cDNAs from each line were expressed in Escherichia coli. The expression product for the clone from Le converted GA9 to GA4, and GA20 to GA1, with Km values of 1.5 M and 13 M, respectively. The amino acid substitution in the clone from le increased Km for GA9 100-fold and reduced conversion of GA20 to almost nil. Expression products from le and le-3 possessed similar levels of 3-hydroxylase activity, and the expression product from led was inactive. Our results suggest that the 3-hydroxylase cDNA is encoded by Le. Le transcript is expressed in roots, shoots, and cotyledons of germinating pea seedlings, in internodes and leaves of established seedlings, and in developing seeds.
Resumo:
Thyroid hormone plays an essential role in mammalian brain maturation and function, in large part by regulating the expression of specific neuronal genes. In this tissue, the type 2 deiodinase (D2) appears to be essential for providing adequate levels of the active thyroid hormone 3,5,3-triiodothyronine (T3) during the developmental period. We have studied the regional and cellular localization of D2 mRNA in the brain of 15-day-old neonatal rats. D2 is expressed in the cerebral cortex, olfactory bulb, hippocampus, caudate, thalamus, hypothalamus, and cerebellum and was absent from the white matter. At the cellular level, D2 is expressed predominantly, if not exclusively, in astrocytes and in the tanycytes lining the third ventricle and present in the median eminence. These results suggest a close metabolic coupling between subsets of glial cells and neurons, whereby thyroxine is taken up from the blood and/or cerebrospinal fluid by astrocytes and tanycytes, is deiodinated to T3, and then is released for utilization by neurons.
Resumo:
Stimulation of antitumor immune mechanisms is the primary goal of cancer immunotherapy, and accumulating evidence suggests that effective alteration of the hosttumor relationship involves immunomodulating cytokines and also the presence of costimulatory molecules. To examine the antitumor effect of direct in vivo gene transfer of murine interleukin 12 (IL-12) and B7-1 into tumors, we developed an adenovirus (Ad) vector, AdIL12B7-1, that encodes the two IL-12 subunits in early region 1 (E1) and the B7-1 gene in E3 under control of the murine cytomegalovirus promoter. This vector expressed high levels of IL-12 and B7-1 in infected murine and human cell lines and in primary murine tumor cells. In mice bearing tumors derived from a transgenic mouse mammary adenocarcinoma, a single intratumoral injection with a low dose (2.5 107 pfu/mouse) of AdIL12B7-1 mediated complete regression in 70% of treated animals. By contrast, administration of a similar dose of recombinant virus encoding IL-12 or B7-1 alone resulted in only a delay in tumor growth. Interestingly, coinjection of two different viruses expressing either IL-12 or B7-1 induced complete tumor regression in only 30% of animals treated at this dose. Significantly, cured animals remained tumor free after rechallenge with fresh tumor cells, suggesting that protective immunity had been induced by treatment with AdIL12B7-1. These results support the use of Ad vectors as a highly efficient delivery system for synergistically acting molecules and show that the combination of IL-12 and B7-1 within a single Ad vector might be a promising approach for in vivo cancer therapy.