945 resultados para welding clamp
Resumo:
Automotive, laser welding, coated sheet, multi joint
Resumo:
Aluminium, Fuselage,Fuselage Construction, Hot Cracking, Laser Beam Welding, Stringer, Weldability, Welding, Welding Process, Airbus, A318, A380, AA6013, AA6056
Resumo:
Stress, molecular crowding and mutations may jeopardize the native folding of proteins. Misfolded and aggregated proteins not only loose their biological activity, but may also disturb protein homeostasis, damage membranes and induce apoptosis. Here, we review the role of molecular chaperones as a network of cellular defenses against the formation of cytotoxic protein aggregates. Chaperones favour the native folding of proteins either as "holdases", sequestering hydrophobic regions in misfolding polypeptides, and/or as "unfoldases", forcibly unfolding and disentangling misfolded polypeptides from aggregates. Whereas in bacteria, plants and fungi Hsp70/40 acts in concert with the Hsp100 (ClpB) unfoldase, Hsp70/40 is the only known chaperone in the cytoplasm of mammalian cells that can forcibly unfold and neutralize cytotoxic protein conformers. Owing to its particular spatial configuration, the bulky 70 kDa Hsp70 molecule, when distally bound through a very tight molecular clamp onto a 50-fold smaller hydrophobic peptide loop extruding from an aggregate, can locally exert on the misfolded segment an unfolding force of entropic origin, thus destroying the misfolded structures that stabilize aggregates. ADP/ATP exchange triggers Hsp70 dissociation from the ensuing enlarged unfolded peptide loop, which is then allowed to spontaneously refold into a closer-to-native conformation devoid of affinity for the chaperone. Driven by ATP, the cooperative action of Hsp70 and its co-chaperone Hsp40 may thus gradually convert toxic misfolded protein substrates with high affinity for the chaperone, into non-toxic, natively refolded, low-affinity products. Stress- and mutation-induced protein damages in the cell, causing degenerative diseases and aging, may thus be effectively counteracted by a powerful network of molecular chaperones and of chaperone-related proteases.
T-type Ca2+ channels, SK2 channels and SERCAs gate sleep-related oscillations in thalamic dendrites.
Resumo:
T-type Ca2+ channels (T channels) underlie rhythmic burst discharges during neuronal oscillations that are typical during sleep. However, the Ca2+-dependent effectors that are selectively regulated by T currents remain unknown. We found that, in dendrites of nucleus reticularis thalami (nRt), intracellular Ca2+ concentration increases were dominated by Ca2+ influx through T channels and shaped rhythmic bursting via competition between Ca2+-dependent small-conductance (SK)-type K+ channels and Ca2+ uptake pumps. Oscillatory bursting was initiated via selective activation of dendritically located SK2 channels, whereas Ca2+ sequestration by sarco/endoplasmic reticulum Ca2+-ATPases (SERCAs) and cumulative T channel inactivation dampened oscillations. Sk2-/- (also known as Kcnn2) mice lacked cellular oscillations, showed a greater than threefold reduction in low-frequency rhythms in the electroencephalogram of non-rapid-eye-movement sleep and had disrupted sleep. Thus, the interplay of T channels, SK2 channels and SERCAs in nRt dendrites comprises a specialized Ca2+ signaling triad to regulate oscillatory dynamics related to sleep.
Resumo:
Sleep spindles are synchronized 11-15 Hz electroencephalographic (EEG) oscillations predominant during nonrapid-eye-movement sleep (NREMS). Rhythmic bursting in the reticular thalamic nucleus (nRt), arising from interplay between Ca(v)3.3-type Ca(2+) channels and Ca(2+)-dependent small-conductance-type 2 (SK2) K(+) channels, underlies spindle generation. Correlative evidence indicates that spindles contribute to memory consolidation and protection against environmental noise in human NREMS. Here, we describe a molecular mechanism through which spindle power is selectively extended and we probed the actions of intensified spindling in the naturally sleeping mouse. Using electrophysiological recordings in acute brain slices from SK2 channel-overexpressing (SK2-OE) mice, we found that nRt bursting was potentiated and thalamic circuit oscillations were prolonged. Moreover, nRt cells showed greater resilience to transit from burst to tonic discharge in response to gradual depolarization, mimicking transitions out of NREMS. Compared with wild-type littermates, chronic EEG recordings of SK2-OE mice contained less fragmented NREMS, while the NREMS EEG power spectrum was conserved. Furthermore, EEG spindle activity was prolonged at NREMS exit. Finally, when exposed to white noise, SK2-OE mice needed stronger stimuli to arouse. Increased nRt bursting thus strengthens spindles and improves sleep quality through mechanisms independent of EEG slow waves (<4 Hz), suggesting SK2 signaling as a new potential therapeutic target for sleep disorders and for neuropsychiatric diseases accompanied by weakened sleep spindles.
Resumo:
The liver secretes triglyceride-rich VLDLs, and the triglycerides in these particles are taken up by peripheral tissues, mainly heart, skeletal muscle, and adipose tissue. Blocking hepatic VLDL secretion interferes with the delivery of liver-derived triglycerides to peripheral tissues and results in an accumulation of triglycerides in the liver. However, it is unclear how interfering with hepatic triglyceride secretion affects adiposity, muscle triglyceride stores, and insulin sensitivity. To explore these issues, we examined mice that cannot secrete VLDL [due to the absence of microsomal triglyceride transfer protein (Mttp) in the liver]. These mice exhibit markedly reduced levels of apolipoprotein B-100 in the plasma, along with reduced levels of triglycerides in the plasma. Despite the low plasma triglyceride levels, triglyceride levels in skeletal muscle were unaffected. Adiposity and adipose tissue triglyceride synthesis rates were also normal, and body weight curves were unaffected. Even though the blockade of VLDL secretion caused hepatic steatosis accompanied by increased ceramides and diacylglycerols in the liver, the mice exhibited normal glucose tolerance and were sensitive to insulin at the whole-body level, as judged by hyperinsulinemic euglycemic clamp studies. Normal hepatic glucose production and insulin signaling were also maintained in the fatty liver induced by Mttp deletion. Thus, blocking VLDL secretion causes hepatic steatosis without insulin resistance, and there is little effect on muscle triglyceride stores or adiposity
Resumo:
Background: Voltage-gated sodium channels (Nav1.x) are important players in chronic pain. A particular interest has grown in Nav1.7, expressed in nociceptors, since mutations in its gene are associated to two inherited pain syndromes or insensitivity to pain. Rufinamide, a drug used to treat refractory epilepsy such as the Lennox-Gastaut syndrome, has been shown to reduce the number of action potentials in cortical neurons without completely blocking Na channels. Aim: The goal of this study was to investigate the effect of rufinamide on Nav1.7 current. Methods and results: Whole-cell patch clamp experiments were performed using HEK293 cells stably expressing Nav1.7. Rufinamide significantly decreased peak sodium current by 28.3, 21.2 and 12.5% at concentrations of 500, 100 and 50μM respectively (precise EC50 could not be calculated since higher rufinamide concentrations could not be achieved in physiological buffer solution). No significant difference on the V1/2 of voltage-dependence of activation was seen; however a shift in the steady-state inactivation curve was observed (-82.6 mV to -88.8 mV and -81.8 to -87.6 mV for 50 and 100 μM rufinamide respectively, p <0.005). Frequency-dependent inhibition of Nav1.7 was also influenced by the drug. One hundred μM rufinamide reduced the peak sodium current (in % of the peak current taken at the first sweep of a train of 50) from 90.8 to 80.8% (5Hz), 88.7 to 71.8% (10 Hz), 69.1 to 49.2% (25 Hz) and 22.3 to 9.8% (50 Hz) (all p <0.05). Onset of fast inactivation was not influenced by the drug since no difference in the time constant of current decay was observed. Conclusion: In the concentration range of plasma level in human treated for epilepsy, 15 μM, rufinamide only minimally blocks Nav1.7. However, it stabilizes the inactivated state and exerts frequencydependent inhibition of Nav1.7. These pharmacological properties may be of use in reducing ectopic discharges as a causal and symptom related contributor of neuropathic pain syndrome.
Resumo:
The transmembrane water movements during cellular processes and their relationship to ionic channel activity remain largely unknown. As an example, in epithelial cells it was proposed that the movement of water could be directly linked to cystic fibrosis transmembrane conductance regulator (CFTR) protein activity through a cAMP-stimulated aqueous pore, or be dependent on aquaporin. Here, we used digital holographic microscopy (DHM) an interferometric technique to quantify in situ the transmembrane water fluxes during the activity of the epithelial chloride channel, CFTR, measured by patch-clamp and iodide efflux techniques. We showed that the water transport measured by DHM is fully inhibited by the selective CFTR blocker CFTRinh172 and is absent in cells lacking CFTR. Of note, in cells expressing the mutated version of CFTR (F508del-CFTR), which mimics the most common genetic alteration encountered in cystic fibrosis, we also show that the water movement is profoundly altered but restored by pharmacological manipulation of F508del-CFTR-defective trafficking. Importantly, whereas activation of this endogenous water channel required a cAMP-dependent stimulation of CFTR, activation of CFTR or F508del-CFTR by two cAMP-independent CFTR activators, genistein and MPB91, failed to trigger water movements. Finally, using a specific small-interfering RNA against the endogenous aquaporin AQP3, the water transport accompanying CFTR activity decreased. We conclude that water fluxes accompanying CFTR activity are linked to AQP3 but not to a cAMP-stimulated aqueous pore in the CFTR protein.
Resumo:
OBJECTIVE: The hyperglycemic hyperinsulinemic clamp technique using intraduodenally infused glucose is an attractive tool for studying postprandial glucose metabolism under strictly controlled conditions. Because it requires the use of somatostatin (SST), we examined, in this study, the effect of SST on intestinal glucose absorption. CONTEXT: Twenty-six normal volunteers were given a constant 3-h intraduodenal infusion of glucose (6 mg.kg(-1).min(-1)) labeled with [2-(3)H]glucose for glucose absorption measurement. During glucose infusion, 19 subjects received iv SST at doses of 10-100 ng.kg(-1).min(-1) plus insulin and glucagon, and seven subjects were studied under control conditions. In the controls, glucose was absorbed at a rate that, after a 20-min lag period, equaled the infusion rate. RESULTS: With all the doses of SST tested, absorption was considerably delayed but equaled the rate of infusion after 3 h. At that time, only 5 +/- 2% of the total amount of infused glucose was unabsorbed in the control subjects vs. 36 +/- 2% (P < 0.001) in the SST-infused subjects. In the latter, the intraluminal residue was almost totally absorbed within 40 min of the cessation of SST infusion. At the lowest dose of SST tested (10 ng.kg(-1).min(-1)), suppression of insulin secretion was incomplete. CONCLUSION: These properties of SST hamper the use of intraduodenal hyperglycemic hyperinsulinemic clamps as a tool for exploring postprandial glucose metabolism.
Resumo:
Probursata brasiliensis n. sp., a gill filament parasite of carangid fishes, O. palometa (Cuvier), Oligoplites saurus (Bloch & Schneider), and O. saliens (Bloch), from the Brazilian coast, is described and illustrated. The new species differs from Probursata veraecrucis Bravo-Hollis, 1984, the type and only species of this genus by the presence of spines in the auricular expansions of the genital atrium, by the trifurcate supplementary process of the clamp's midsclerite, and by having a larger number of tests and clamps. This is the first record of the genus Probursata Bravo-Hollis, 1984, in the South Atlantic Ocean.
Resumo:
The Na,K-ATPase is a major ion-motive ATPase of the P-type family responsible for many aspects of cellular homeostasis. To determine the structure of the pathway for cations across the transmembrane portion of the Na,K-ATPase, we mutated 24 residues of the fourth transmembrane segment into cysteine and studied their function and accessibility by exposure to the sulfhydryl reagent 2-aminoethyl-methanethiosulfonate. Accessibility was also examined after treatment with palytoxin, which transforms the Na,K-pump into a cation channel. Of the 24 tested cysteine mutants, seven had no or a much reduced transport function. In particular cysteine mutants of the highly conserved "PEG" motif had a strongly reduced activity. However, most of the non-functional mutants could still be transformed by palytoxin as well as all of the functional mutants. Accessibility, determined as a 2-aminoethyl-methanethiosulfonate-induced reduction of the transport activity or as inhibition of the membrane conductance after palytoxin treatment, was observed for the following positions: Phe(323), Ile(322), Gly(326), Ala(330), Pro(333), Glu(334), and Gly(335). In accordance with a structural model of the Na,K-ATPase obtained by homology modeling with the two published structures of sarcoplasmic and endoplasmic reticulum calcium ATPase (Protein Data Bank codes 1EUL and 1IWO), the results suggest the presence of a cation pathway along the side of the fourth transmembrane segment that faces the space between transmembrane segments 5 and 6. The phenylalanine residue in position 323 has a critical position at the outer mouth of the cation pathway. The residues thought to form the cation binding site II ((333)PEGL) are also part of the accessible wall of the cation pathway opened by palytoxin through the Na,K-pump.
Resumo:
OBJECTIVE: Adverse effects of hypercaloric, high-fructose diets on insulin sensitivity and lipids in human subjects have been shown repeatedly. The implications of fructose in amounts close to usual daily consumption, however, have not been well studied. This study assessed the effect of moderate amounts of fructose and sucrose compared with glucose on glucose and lipid metabolism. RESEARCH DESIGN AND METHODS: Nine healthy, normal-weight male volunteers (aged 21-25 years) were studied in this double-blind, randomized, cross-over trial. All subjects consumed four different sweetened beverages (600 mL/day) for 3 weeks each: medium fructose (MF) at 40 g/day, and high fructose (HF), high glucose (HG), and high sucrose (HS) each at 80 g/day. Euglycemic-hyperinsulinemic clamps with [6,6]-(2)H(2) glucose labeling were used to measure endogenous glucose production. Lipid profile, glucose, and insulin were measured in fasting samples. RESULTS: Hepatic suppression of glucose production during the clamp was significantly lower after HF (59.4 ± 11.0%) than HG (70.3 ± 10.5%, P < 0.05), whereas fasting glucose, insulin, and C-peptide did not differ between the interventions. Compared with HG, LDL cholesterol and total cholesterol were significantly higher after MF, HF, and HS, and free fatty acids were significantly increased after MF, but not after the two other interventions (P < 0.05). Subjects' energy intake during the interventions did not differ significantly from baseline intake. CONCLUSIONS: This study clearly shows that moderate amounts of fructose and sucrose significantly alter hepatic insulin sensitivity and lipid metabolism compared with similar amounts of glucose.
Resumo:
OBJECTIVE: To assess the outcome of patients with ruptured descending thoracic and thoracoabdominal aortic aneurysms undergoing emergency repair, in comparison to elective surgery for chronic lesions. METHODS: A prospective study of 100 consecutive patients operated upon the descending aorta (1-8 segments) using proximal unloading and distal protection with partial cardiopulmonary bypass, heparin surface-coated perfusion equipment and low systemic heparinization (loading dose 100 IU/kg, activated coagulation time > 180 s), staged cross-clamping, sealed grafts and graft inclusion. RESULTS: Arteriosclerotic lesions were present in 53/100 patients (53%) for all, 30/53 (56%) for chronic, and 21/33 (63%) for ruptured, aneurysms (NS). Dissecting lesions were found in 38/100 patients (38%) for all, 20/53 (38%) for chronic, and 8/33 (24%) for ruptured aneurysms (NS). Preoperative hematocrit was 38 +/- 6% for all, 40 +/- 5% for chronic, and 33 +/- 5% for ruptured aneurysmal patients (P < 0.001 ruptured versus chronic). The extent of aortic repair (1-8 segments) was 3.3 +/- 1.6 for all, 3.5 +/- 1.5 for chronic, and 3.2 +/- 1.4 for ruptured, aneurysms (NS). Transdiaphragmatic repair was performed in 51/100 (51%) of all, 28/53 (53%) of chronic, and 17/33 (51%) of ruptured aneurysms (NS). Aortic cross-clamp time was 38 +/- 21 min for all, 39 +/- 24 min for chronic, and 38 +/- 17 min for ruptured, aneurysmal patients (NS). The amount of red cells washed and autotransfused was 2792 +/- 2239 ml in all, 3143 +/- 2531 ml in chronic, and 2074 +/- 1350 ml in ruptured, aneurysmal patients (P < 0.025). The amount of packed red cells required was 2181 +/- 1830 ml for all, 1736 +/- 1333 ml for chronic, and 2947 +/- 2395 ml for ruptured aneurysmal patients (P < 0.010). Thirty-day mortality was 9/100 (9%) for all, 3/53 (6%) for chronic, and 5/33 (15%) for ruptured aneurysmal patients (NS). Parapareses/plegias occurred in 9/100 (9%) of all, 6/53 (11%) of chronic, and 3/33 (9%) of ruptured, aneurysmal patients (NS). Stepwise regression analysis identified aortic cross-clamp time as a predictor of early mortality (P = 0.002) and parapareses and paraplegias (P = 0.001). Age (P = 0.001), extent of repair (P = 0.008) and preoperative hematocrit (P = 0.001) were predictors for homologous transfusion requirements. CONCLUSION: Emergency repair of ruptured descending thoracic and thoracoabdominal aortic aneurysms can be achieved with acceptable results.
Resumo:
We report the generation and analysis of functional data from multiple, diverse experiments performed on a targeted 1% of the human genome as part of the pilot phase of the ENCODE Project. These data have been further integrated and augmented by a number of evolutionary and computational analyses. Together, our results advance the collective knowledge about human genome function in several major areas. First, our studies provide convincing evidence that the genome is pervasively transcribed, such that the majority of its bases can be found in primary transcripts, including non-protein-coding transcripts, and those that extensively overlap one another. Second, systematic examination of transcriptional regulation has yielded new understanding about transcription start sites, including their relationship to specific regulatory sequences and features of chromatin accessibility and histone modification. Third, a more sophisticated view of chromatin structure has emerged, including its inter-relationship with DNA replication and transcriptional regulation. Finally, integration of these new sources of information, in particular with respect to mammalian evolution based on inter- and intra-species sequence comparisons, has yielded new mechanistic and evolutionary insights concerning the functional landscape of the human genome. Together, these studies are defining a path for pursuit of a more comprehensive characterization of human genome function.
Resumo:
Activation of the mitogen-activated protein (MAP) kinase cascade by progesterone in Xenopus oocytes leads to a marked down-regulation of activity of the amiloride-sensitive epithelial sodium channel (ENaC). Here we have studied the signaling pathways involved in progesterone effect on ENaC activity. We demonstrate that: (i) the truncation of the C termini of the alphabetagammaENaC subunits results in the loss of the progesterone effect on ENaC; (ii) the effect of progesterone was also suppressed by mutating conserved tyrosine residues in the Pro-X-X-Tyr (PY) motif of the C termini of the beta and gamma ENaC subunits (beta(Y618A) and gamma(Y628A)); (iii) the down-regulation of ENaC activity by progesterone was also suppressed by co-expression ENaC subunits with a catalytically inactive mutant of Nedd4-2, a ubiquitin ligase that has been previously demonstrated to decrease ENaC cell-surface expression via a ubiquitin-dependent internalization/degradation mechanism; (iv) the effect of progesterone was significantly reduced by suppression of consensus sites (beta(T613A) and gamma(T623A)) for ENaC phosphorylation by the extracellular-regulated kinase (ERK), a MAP kinase previously shown to facilitate the binding of Nedd4 ubiquitin ligases to ENaC; (v) the quantification of cell-surface-expressed ENaC subunits revealed that progesterone decreases ENaC open probability (whole cell P(o), wcP(o)) and not its cell-surface expression. Collectively, these results demonstrate that the binding of active Nedd4-2 to ENaC is a crucial step in the mechanism of ENaC inhibition by progesterone. Upon activation of ERK, the effect of Nedd4-2 on ENaC open probability can become more important than its effect on ENaC cell-surface expression.