940 resultados para waste pickers
Resumo:
Dissertação de Mestrado, Engenharia Biológica, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2015
Resumo:
This report provides an overview of the recycling and buying recycled activities of state agencies and colleges/universities for fiscal year 2015.
New governance models and the delivery of essential services: the waste and water management sectors
Resumo:
London has traditionally exported most of its waste to former mineral workings in surrounding counties for landfill. Many of these sites are being filled and opportunities for new sites are limited. Virtually all waste reprocessing and recycling facilities, with the exception of textile sorting and some facilities for glass and organic waste composting, are outside London. The Mayor of London's Vision for Waste in London is that by 2020, municipal waste should not compromise London’s future as a sustainable city. This will involve managing waste better, so that its impact on the local and global environment and on London communities, economy and health is minimised. The majority of waste and recyclable materials in London are currently collected and transported for recovery, disposal or reprocessing by road in large vehicles. Environmental costs include, adding to congestion, noise, energy usage, air pollution, and accidents. The Mayor is keen to increase recycling and reuse of waste materials in London, and to ensure that as more of London's waste is diverted away from landfill sites to recycling facilities. Several projects and initiatives have been established and these are reviewed in the paper.
Resumo:
This paper examines the Producer Responsibility Obligations (Packaging Waste) Regulations introduced by the UK Government in 1997. The impact that these Regulations will have on the levels of freight transport activity associated with the collection and redistribution of packaging waste to recovery/recycling facilities is calculated. Findings indicate that the Regulations will lead to a 14% increase in freight vehicle kilometres attributable to packaging waste. The extent to which greater use of reusable containers could help to reduce packaging waste-related transport activity is also modelled. Details arc given of how businesses are responding to the Regulations and how some companies are adapting their logistics systems to incorporate the recovery and recycling of packaging waste as well as replacing disposal packaging with reusable containers. Interviews and case-study material carried out as part of the research are used to support this discussion.
Resumo:
The present paper shows preliminary results of an ongoing project which one of the goals is to investigate the viability of using waste FCC catalyst (wFCC), originated from Portuguese oil refinery, to produce low carbon blended cements. For this purpose, four blended cements were produced by substituting cement CEM I 42.5R up to 20% (w/w) by waste FCC catalyst. Initial and final setting times, consistency of standard paste, soundness and compressive strengths after 2, 7 and 28 days were measured. It was observed that the wFCC blended cements developed similar strength, at 28 days, compared to the reference cement, CEM I 42.5R. Moreover, cements with waste FCC catalyst incorporation up to 15% w/w meet European Standard EN 197-1 specifications for CEM II/A type cement, in the 42.5R strength class.
Resumo:
Dissertação de Mestrado em Ambiente, Saúde e Segurança.
Resumo:
In this study, the effect of incorporation of recycled glass fibre reinforced plastics (GFRP) waste materials, obtained by means of shredding and milling processes, on mechanical behaviour of polyester polymer mortars (PM) was assessed. For this purpose, different contents of GFRP recyclates, between 4% up to 12% in weight, were incorporated into polyester PM materials as sand aggregates and filler replacements. The effect of the addition of a silane coupling agent to resin binder was also evaluated. Applied waste material was proceeding from the shredding of the leftovers resultant from the cutting and assembly processes of GFRP pultrusion profiles. Currently, these leftovers as well as non-conform products and scrap resulting from pultrusion manufacturing process are landfilled, with additional costs to producers and suppliers. Hence, besides the evident environmental benefits, a viable and feasible solution for these wastes would also conduct to significant economic advantages. Design of experiments and data treatment were accomplish by means of full factorial design approach and analysis of variance ANOVA. Experimental results were promising toward the recyclability of GFRP waste materials as partial replacement of aggregates and reinforcement for PM materials, with significant improvements on mechanical properties of resultant mortars with regards to waste-free formulations.
Resumo:
In this paper the adequacy and the benefit of incorporating glass fibre reinforced polymer (GFRP) waste materials into polyester based mortars, as sand aggregates and filler replacements, are assessed. Different weight contents of mechanically recycled GFRP wastes with two particle size grades are included in the formulation of new materials. In all formulations, a polyester resin matrix was modified with a silane coupling agent in order to improve binder-aggregates interfaces. The added value of the recycling solution was assessed by means of both flexural and compressive strengths of GFRP admixed mortars with regard to those of the unmodified polymer mortars. Planning of experiments and data treatment were performed by means of full factorial design and through appropriate statistical tools based on analyses of variance (ANOVA). Results show that the partial replacement of sand aggregates by either type of GFRP recyclates improves the mechanical performance of resultant polymer mortars. In the case of trial formulations modified with the coarser waste mix, the best results are achieved with 8% waste weight content, while for fine waste based polymer mortars, 4% in weight of waste content leads to the higher increases on mechanical strengths. This study clearly identifies a promising waste management solution for GFRP waste materials by developing a cost-effective end-use application for the recyclates, thus contributing to a more sustainable fibre-reinforced polymer composites industry.