880 resultados para variational inequalities
Resumo:
Die vorliegende Arbeit befaßt sich mit einer Klasse von nichtlinearen Eigenwertproblemen mit Variationsstrukturin einem reellen Hilbertraum. Die betrachteteEigenwertgleichung ergibt sich demnach als Euler-Lagrange-Gleichung eines stetig differenzierbarenFunktionals, zusätzlich sei der nichtlineare Anteil desProblems als ungerade und definit vorausgesetzt.Die wichtigsten Ergebnisse in diesem abstrakten Rahmen sindKriterien für die Existenz spektral charakterisierterLösungen, d.h. von Lösungen, deren Eigenwert gerade miteinem vorgegeben variationellen Eigenwert eines zugehörigen linearen Problems übereinstimmt. Die Herleitung dieserKriterien basiert auf einer Untersuchung kontinuierlicher Familien selbstadjungierterEigenwertprobleme und erfordert Verallgemeinerungenspektraltheoretischer Konzepte.Neben reinen Existenzsätzen werden auch Beziehungen zwischenspektralen Charakterisierungen und denLjusternik-Schnirelman-Niveaus des Funktionals erörtert.Wir betrachten Anwendungen auf semilineareDifferentialgleichungen (sowieIntegro-Differentialgleichungen) zweiter Ordnung. Diesliefert neue Informationen über die zugehörigenLösungsmengen im Hinblick auf Knoteneigenschaften. Diehergeleiteten Methoden eignen sich besonders für eindimensionale und radialsymmetrische Probleme, während einTeil der Resultate auch ohne Symmetrieforderungen gültigist.
Resumo:
In this thesis I have characterized the trace measures for particular potential spaces of functions defined on R^n, but "mollified" so that the potentials are de facto defined on the upper half-space of R^n. The potential functions are kind Riesz-Bessel. The characterization of trace measures for these spaces is a test condition on elementary sets of the upper half-space. To prove the test condition as sufficient condition for trace measures, I had give an extension to the case of upper half-space of the Muckenhoupt-Wheeden and Wolff inequalities. Finally I characterized the Carleson-trace measures for Besov spaces of discrete martingales. This is a simplified discrete model for harmonic extensions of Lipschitz-Besov spaces.
Resumo:
In the present thesis, we discuss the main notions of an axiomatic approach for an invariant Harnack inequality. This procedure, originated from techniques for fully nonlinear elliptic operators, has been developed by Di Fazio, Gutiérrez, and Lanconelli in the general settings of doubling Hölder quasi-metric spaces. The main tools of the approach are the so-called double ball property and critical density property: the validity of these properties implies an invariant Harnack inequality. We are mainly interested in the horizontally elliptic operators, i.e. some second order linear degenerate-elliptic operators which are elliptic with respect to the horizontal directions of a Carnot group. An invariant Harnack inequality of Krylov-Safonov type is still an open problem in this context. In the thesis we show how the double ball property is related to the solvability of a kind of exterior Dirichlet problem for these operators. More precisely, it is a consequence of the existence of some suitable interior barrier functions of Bouligand-type. By following these ideas, we prove the double ball property for a generic step two Carnot group. Regarding the critical density, we generalize to the setting of H-type groups some arguments by Gutiérrez and Tournier for the Heisenberg group. We recognize that the critical density holds true in these peculiar contexts by assuming a Cordes-Landis type condition for the coefficient matrix of the operator. By the axiomatic approach, we thus prove an invariant Harnack inequality in H-type groups which is uniform in the class of the coefficient matrices with prescribed bounds for the eigenvalues and satisfying such a Cordes-Landis condition.
Resumo:
Die causa finalis der vorliegenden Arbeit ist das Verständnis des Phasendiagramms von Wasserstoff bei ultrahohen Drücken, welche von nichtleitendem H2 bis hin zu metallischem H reichen. Da die Voraussetzungen für ultrahohen Druck im Labor schwer zu schaffen sind, bilden Computersimulationen ein wichtiges alternatives Untersuchungsinstrument. Allerdings sind solche Berechnungen eine große Herausforderung. Eines der größten Probleme ist die genaue Auswertung des Born-Oppenheimer Potentials, welches sowohl für die nichtleitende als auch für die metallische Phase geeignet sein muss. Außerdem muss es die starken Korrelationen berücksichtigen, die durch die kovalenten H2 Bindungen und die eventuellen Phasenübergänge hervorgerufen werden. Auf dieses Problem haben unsere Anstrengungen abgezielt. Im Kontext von Variationellem Monte Carlo (VMC) ist die Shadow Wave Function (SWF) eine sehr vielversprechende Option. Aufgrund ihrer Flexibilität sowohl lokalisierte als auch delokalisierte Systeme zu beschreiben sowie ihrer Fähigkeit Korrelationen hoher Ordnung zu berücksichtigen, ist sie ein idealer Kandidat für unsere Zwecke. Unglücklicherweise bringt ihre Formulierung ein Vorzeichenproblem mit sich, was die Anwendbarkeit limitiert. Nichtsdestotrotz ist es möglich diese Schwierigkeit zu umgehen indem man die Knotenstruktur a priori festlegt. Durch diesen Formalismus waren wir in der Lage die Beschreibung der Elektronenstruktur von Wasserstoff signifikant zu verbessern, was eine sehr vielversprechende Perspektive bietet. Während dieser Forschung haben wir also die Natur des Vorzeichenproblems untersucht, das sich auf die SWF auswirkt, und dabei ein tieferes Verständnis seines Ursprungs erlangt. Die vorliegende Arbeit ist in vier Kapitel unterteilt. Das erste Kapitel führt VMC und die SWF mit besonderer Ausrichtung auf fermionische Systeme ein. Kapitel 2 skizziert die Literatur über das Phasendiagramm von Wasserstoff bei ultrahohem Druck. Das dritte Kapitel präsentiert die Implementierungen unseres VMC Programms und die erhaltenen Ergebnisse. Zum Abschluss fasst Kapitel 4 unsere Bestrebungen zur Lösung des zur SWF zugehörigen Vorzeichenproblems zusammen.
Resumo:
While empirical evidence continues to show that low socio-economic position is associated with less likely chances of being in good health, our understanding of why this is so remains less than clear. In this paper we examine the theoretical foundations for a structure-agency approach to the reduction of social inequalities in health. We use Max Weber's work on lifestyles to provide the explanation for the dualism between life chances (structure) and choice-based life conduct (agency). For explaining how the unequal distribution of material and non-material resources leads to the reproduction of unequal life chances and limitations of choice in contemporary societies, we apply Pierre Bourdieu's theory on capital interaction and habitus. We find, however, that Bourdieu's habitus concept is insufficient with regard to the role of agency for structural change and therefore does not readily provide for a theoretically supported move from sociological explanation to public health action. We therefore suggest Amartya Sen's capability approach as a useful link between capital interaction theory and action to reduce social inequalities in health. This link allows for the consideration of structural conditions as well as an active role for individuals as agents in reducing these inequalities. We suggest that people's capabilities to be active for their health be considered as a key concept in public health practice to reduce health inequalities. Examples provided from an ongoing health promotion project in Germany link our theoretical perspective to a practical experience.
Resumo:
In the context of shifting cultural anchors as well as unstable global economic conditions, new practices of intimacy and sexuality may become tactics in an individual’s negotiation of conflicting desires and potentials. This article offers reflection on the interface between global forces, powerful transcultural narratives, and state policies, on the one hand, and local, even individual, constructions and tactics in regard to sexuality, marriage, migration, and work, on the other. The article focuses on the life trajectory of Gudiya, an ambitious young Hindu woman who started out life with little social capital and few economic resources in a dusty corner of what was then the tiny kingdom of Nepal. Gudiya’s story highlights the ways in which she has engaged in relational realignments aimed at bringing her closer to the life she imagines, even as she has encountered new and persistent forms of inequality both local and transnational in scale.