954 resultados para unspecific immunity


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dialysis patients are at high risk for hepatitis B infection, which is a serious but preventable disease. Prevention strategies include the administration of the hepatitis B vaccine. Dialysis patients have been noted to have a poor immune response to the vaccine and lose immunity more rapidly. The long term immunogenicity of the hepatitis B vaccine has not been well defined in pediatric dialysis patients especially if administered during infancy as a routine childhood immunization.^ Purpose. The aim of this study was to determine the median duration of hepatitis B immunity and to study the effect of vaccination timing and other cofactors on the duration of hepatitis B immunity in pediatric dialysis patients.^ Methods. Duration of hepatitis B immunity was determined by Kaplan-Meier survival analysis. Comparison of stratified survival analysis was performed using log-rank analysis. Multivariate analysis by Cox regression was used to estimate hazard ratios for the effect of timing of vaccine administration and other covariates on the duration of hepatitis B immunity.^ Results. 193 patients (163 incident patients) had complete data available for analysis. Mean age was 11.2±5.8 years and mean ESRD duration was 59.3±97.8 months. Kaplan-Meier analysis showed that the total median overall duration of immunity (since the time of the primary vaccine series) was 112.7 months (95% CI: 96.6, 124.4), whereas the median overall duration of immunity for incident patients was 106.3 months (95% CI: 93.93, 124.44). Incident patients had a median dialysis duration of hepatitis B immunity equal to 37.1 months (95% CI: 24.16, 72.26). Multivariate adjusted analysis showed that there was a significant difference between patients based on the timing of hepatitis B vaccination administration (p<0.001). Patients immunized after the start of dialysis had a hazard ratio of 6.13 (2.87, 13.08) for loss of hepatitis B immunity compared to patients immunized as infants (p<0.001).^ Conclusion. This study confirms that patients immunized after dialysis onset have an overall shorter duration of hepatitis B immunity as measured by hepatitis B antibody titers and after the start of dialysis, protective antibody titer levels in pediatric dialysis patients wane rapidly compared to healthy children.^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rates of syphilis in the United States have increased since the all time low in 2000. In 2003, the rates of syphilis in the United States were 2.5 cases per 100,000. There were 178 reported cases of primary and secondary syphilis (8.9 cases per 100,000) in Houston, Texas, which was a 58.9% increase from 2002. While syphilis can be completely treated now, unlike in times past, it is still a public health concern. The purpose of this study is to examine the possibility of modeling the impact of an immune response in primary and secondary syphilis in 63 major cities across the United States, stratified by gender and racial-ethnic groups. A Fourier analysis will be performed by SAS. Subsequently, this study will compare the results to a similar study of syphilis in 68 US cities, that focused on immune response, however, did not stratified by race and gender. This study will help determine if the oscillating rates of syphilis are due to biological factors of the disease or to behavioral changes in the population. This study will use surveillance data from 63 major cities across the United States. The data will be provided by the Centers of Disease Control. Ultimately, this study will expand the knowledge of the effect of immunity on endemics.^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hypothesis tested was that rapid rejection of Trichinella spiralis infective larvae from immunized rats following a challenge infection is associated with a local anaphylactic reaction, and this response should be reflected in altered small intestinal motility. The objective was to determine if altered gut smooth muscle function accompanies worm rejection based on the assumption that anaphylaxis in vivo could be detected by changes in intestinal smooth muscle contractile activity (ie. an equivalent of the Schultz-Dale reaction or in vitro anaphylaxis). The aims were to (1) characterize motility changes by monitoring intestinal myoelectric activity in conscious rats during the enteric phase of T. spiralis infection in immunized hosts, (2) detect the onset and magnitude of myoelectric changes caused by challenge infection in immunized rats, (3) determine the parasite stimulus causing changes, and (4) determine the specificity of host response to stimulation. Electrical slow wave frequency, spiking activity, normal interdigestive migrating myoelectric complexes and abnormal migrating action potential complexes were measured. Changes in myoelectric parameters induced by larvae inoculated into the duodenum of immune hosts differed from those associated with primary infection with respect to time of onset, magnitude and duration. Myoelectric changes elicited by live larvae could not be reproduced by inoculation of hosts with dead larvae, larval excretory-secretory products, or by challenge with a heterologous parasite, Eimeria nieschulzi. These results indicate that (1) local anaphylaxis is a component of the initial response to T. spiralis in immune hosts, since the rapid onset of altered smooth muscle function parallels in time the expression of rapid rejection of infective larvae, and (2) an active mucosal penetration attempt by the worm is necessary to elicit this host response. These findings provide evidence that worm rejection is a consequence of, or sequel to, an immediate hypersensitivity reaction elicited when parasites attempt to invade the gut mucosa of immunized hosts. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plasmacytoid dendritic cells (pDCs) selectively express TLR7 which allows them to respond to RNA viruses and TLR9 which allows them to respond to DNA viruses and CpG oligonucleotides. Upon exposure to virus pDCs produce vast amounts of type I interferon (IFN) directly inhibiting viral replication and contributing to the activation of other immune cells. The ability of pDCs to promote B and T cell differentiation through type I IFN has been well documented although the role of additional factors including tumor necrosis factor (TNF) family members has not been thoroughly addressed. Here the expression of selected TNF family members in pDCs was examined and the role of TNF receptor-ligand interactions in the regulation of B and T lymphocyte growth and differentiation by pDCs was investigated. Upon stimulation with CpG-B, pDCs exhibit strong and stable expression of CD70, a TNF family ligand that binds to its receptor CD27 on memory B cells and promotes plasma cell differentiation and Ig secretion. Using an in vitro pDC/B cell co-culture system, it was determined that CpG-B-stimulated pDCs induce the proliferation of CD40L-activated human peripheral B cells and Ig secretion. This occurs independently of IFN and residual CpG, and requires physical contact between pDCs and B cells. CpG-stimulated pDCs induce the proliferation of both naive and memory B cells although Ig secretion is restricted to the memory subset. Blocking the interaction of CD70 with CD27 using an antagonist anti-CD70 antibody reduces the induction of B cell proliferation and IgG secretion by CpG-B-stimulated pDCs. Published studies have also indicated an important role for CD70 in promoting the expansion of CD4+ and CD8+ T cells and the development of effector function. CpG-B-stimulated pDCs induce naïve CD4+ T cell proliferation and production of multiple cytokines including IFN-γ, TNF-α, IL-10, IL-4, IL-5 and IL-13. Blocking the function of CD70 with an antagonist anti-CD70 antibody significantly reduced the induction of naïve CD4+ T cell proliferation by CpG-B-stimulated pDCs and the production of IL-4 and IL-13. Collectively these data indicate an important role for CD70 in the regulation of B and T lymphocyte growth and differentiation by pDCs. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Giardia lamblia is one of the most common causes of gastrointestinal tract infection among young children worldwide. Yet host protection against this parasite and the effect of infection with Giardia on infant growth are poorly understood. It was hypothesized that among young children, protection against infection with Giardia is afforded by breastfeeding and previous infection with the parasite and further, that infection with Giardia decreases growth velocity. From 4/88 to 4/90, 197 infants in a poor area of Mexico City were followed from 0 to 18 months of age, with stool specimens, symptoms and feeding status data collected weekly. A total of 6,031 stool specimens were tested for Giardia antigen by enzyme-linked immunosorbent assay. There were 1.0 Giardia infections per child-year; 25% were symptomatic and 54% lasted more than 1 month; 94 infants had 1, and 33 had 2 or more infections. Breastfeeding status was coded and analyzed for each child-week of follow up. 91% of study infants were breastfed from birth, 57% at 6 months and 38% at 12 months of age. Rate ratios for non-breastfeeding adjusted for confounding factors were calculated from stratified analyses and the Cox proportional hazards model. Not breastfeeding was a significant risk factor for first infection with Giardia vs. any breastfeeding (adjusted RR = 1.8; 1.1, 2.8) at all ages; a dose response was demonstrated by degree of breastfeeding. The adjusted rate ratio for non-breastfeeding vs. partial breastfeeding was 1.6 (1.03, 2.6) and for non-breastfeeding vs. complete breastfeeding was 4.7 (1.4, 15.9). Among Giardia infected infants, breastfeeding did not protect against diarrheal symptoms or shorten the duration of carriage. First and repeat infections with Giardia did not differ in duration or the percent symptomatic. The analysis of growth and Giardia infection was inconclusive but suggested that a history of Giardia infection might be associated with decreased weight velocity, while an immediate chronic infection might be associated with increased weight velocity. In summary, these data indicate that breastfeeding protects infants against infection with Giardia; provide no evidence of protection against repeat infections resulting from a prior infection and suggest but do not establish that a history of Giardia infection might be associated with decreased growth in young children. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The presentation of MHC class I (MHC-I)/peptide complexes by dendritic cells (DCs) is critical for the maintenance of central tolerance to self and for the regulation of cytotoxic T lymphocytes (CTL)-mediated adaptive immune responses against pathogens and cancer cells. Interestingly, several findings have suggested that the cytoplasmic tail of MHC class I plays a functional role in the regulation of CTL immune responses. For example, our previous studies demonstrated that exon 7-deleted MHC-I molecules not only showed extended DC cell surface half-lives but also induced significantly increased CTL responses to viral challange invivo. Although exon 7-deleted variant of MHC-I does not occur naturally in humans, the animal studies prompted us to examine whether exon 7-deleted MHC-I molecules could generate augmented CTL responses in a therapeutic DC-based vaccine setting. To examine the stimulatory capacity of exon 7-deleted MHC-I molecules, we generated a lentivirus-mediated gene transfer system to induce the expression of different MHC-I cytoplasmic tail isoforms in both mouse and human DCs. These DCs were then used as vaccines in a melanoma mouse tumor model and in a human invitro co-culture system. In this thesis, we show that DCs expressing exon 7-deleted MHC-I molecules, stimulated remarkably higher levels of T-cell cytokine production and significantly increased the proliferation of meanoma-specific (Pmel-1) T cells compared with DCs expressing wild type MHC-I. We also demonstrate that, in combination with adoptive transfer of Pmel-1 T-cell, DCs expressing exon 7-deleted Db molecules induced greater anti-tumor responses against established B16 melanoma tumors, significantly extending mouse survival as compared to DCs expressing wild-type Db molecules. Moreover, we also observed that human DCs expressing exon 7-deleted HLA-A2 molecules showed similarly augmented CTL stimulatory ability. Mechanistic studies suggest that exon 7-deleted MHC-I molecules showed impaired lateral membrane movement and extended cell surface half-lives within the DC/T-cell interface, leading to increased spatial availability of MHC-I/peptide complexes for recognition by CD8+ T cells. Collectively, these results suggesr that targeting exon 7 within the cytoplasmic tail of MHC-I molecules in DC vaccines has the potential to enhance CD8+ T cell stimulatory capacity and improve clinical outcomes in patients with cancer or viral infections.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many tumors arise from sites of inflammation providing evidence that innate immunity is a critical component in the development and progression of cancer. Neutrophils are primary mediators of the innate immune response. Upon activation, an important function of neutrophils is release of an assortment of proteins from their granules including the serine protease neutrophil elastase (NE). The effect of NE on cancer has been attributed primarily to its ability to degrade the extracellular matrix thereby promoting invasion and metastasis. Recently, it was shown that NE could be taken up by lung cancer cells leading to degradation of insulin receptor substrate-1 thereby promoting hyperactivity of the phosphatidylinositol-3 kinase (PI3K) pathway and tumor cell proliferation. To our knowledge, nobody has investigated uptake of NE by other tumor types. In addition, NE has broad substrate specificity suggesting that uptake of NE by tumor cells could impact processes regulating tumorigenensis other than activation of the PI3K pathway. Neutrophil elastase has been identified in breast cancer specimens where high levels of NE have prognostic significance. These studies have assessed NE levels in whole tumor lysates. Because the major source of NE is from activated neutrophils, we hypothesized that breast cancer cells do not have endogenous NE but may take up NE released by tumor associated neutrophils in the tumor microenvironment and that this could provide a link between the innate immune response to tumors and specific adaptive immune responses. In this thesis, we show that breast cancer cells lack endogenous NE expression and that they are able to take up NE resulting in increased generation of low molecular weight cyclin E (CCNE) and enhanced susceptibility to lysis by CCNE-specific cytotoxic T lymphocytes. We also show that after taking up NE and proteinase 3 (PR3), a second primary granule protease with significant homology to NE, breast cancer cells cross-present the NE- and PR3-derived peptide PR1 rendering them susceptible to PR1-targeted therapies. Taken together, our data support a role for NE uptake in modulating adaptive immune responses against breast cancer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tuberculosis is a major cause of death due to an infection in mankind. BCG vaccine protects against childhood tuberculosis although, it fails to protect against adult tuberculosis. BCG vaccine localizes to immature phagosomes of macrophages, and avoids lysosomal fusion, which decreases peptide antigen production. Peptides are essential for macrophage-mediated priming of CD4 and CD8 T cells respectively through MHC-II and MHC-I pathways. Furthermore, BCG reduces the expression of MHC-II in macrophages of mice after infection, through Toll-like receptor-1/2 (TLR-1/2) mediated signaling. In my first aim, I hypothesized that BCG-induced reduction of MHC-II levels in macrophages can decrease CD4 T cell function, while activation of other surface Toll-like receptors (TLR) can enhance CD4 T cell function. An in vitro antigen presentation model was used where, TLR activated macrophages presented an epitope of Ag85B, a major immunogen of BCG to CD4 T cells, and T cell derived IL-2 was quantitated as a measure of antigen presentation. Macrophages with BCG were poor presenters of Ag85B while, TLR-7/9/5/4 and 1/2 activation led to an enhanced antigen presentation. Furthermore, TLR-7/9 activation was found to down-regulate the degradation of MHC-II through ubiquitin ligase MARCH1, and also stimulate MHC-II expression through activation of AP-1 and CREB transcription elements via p38 and ERK1/2 MAP kinases. I conclude from Aim-I studies that TLR-7/9 ligands can be used as more effective ‘adjuvants’ for BCG vaccine. In Aim-II, I evaluated the poor CD8 T cell function in BCG vaccinated mice thought to be due to a decreased leak of antigens into cytosol from immature phagosomes, which reduces the MHC-I mediated activation of CD8 T cells. I hypothesized that rapamycin co-treatment could boost CD8 T cell function since it was known to sort BCG vaccine into lysosomes increasing peptide generation, and it also enhanced the longevity of CD8 T cells. Since CD8 T cell function is a dynamic event better measurable in vivo, mice were given BCG vaccine with or without rapamycin injections and challenged with virulent Mycobacterium tuberculosis. Organs were analysed for tetramer or surface marker stained CD8 T cells using flow cytometry, and bacterial counts of organisms for evaluation of BCG-induced protection. Co-administration of rapamycin with BCG significantly increased the numbers of CD8 T cells in mice which developed into both short living effector- SLEC type of CD8 T cells, and memory precursor effector-MPEC type of longer-living CD8 T cells. Increased levels of tetramer specific-CD8 T cells correlated with a better protection against tuberculosis in rapamycin-BCG group compared to BCG vaccinated mice. When rapamycin-BCG mice were rested and re-challenged with M.tuberculosis, MPECs underwent stronger recall expansion and protected better against re-infection than mice vaccinated with BCG alone. Since BCG induced immunity wanes with time in humans, we made two novel observations in this study that adjuvant activation of BCG vaccine and rapamycin co-treatment both lead to a stronger and longer vaccine-mediated immunity to tuberculosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plant mitogen-activated protein kinase (MAPK) casca des transduce environmental molecular signals and developmental cues into cellular responses. Among these signals are the pathogen-associated molecular patterns (PAMPs) that upon recognition by plant pattern recognition receptors (PRR), including Receptor-Like Kinases (RLKs), activate MAPK cascades that regulate PAMP-triggered immunity responses (PTI).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Induced defense responses in plants usually involve biosynthesis of antimicrobial metabolites and their targeted secretion at the site of pathogen contact. Our recent study on the model plant Arabidopsis revealed a novel pathogen triggered metabolism pathway for glucosinolates, amino acid-derived thio-glucosides characteristic for crucifer plants that so far were mainly known as insect deterrents (Bednarek et al. 2009).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Las cascadas de señalización mediadas por proteína quinasas activadas por mitógeno (MAP quinasas) son capaces de integrar y transducir señales ambientales en respuestas celulares. Entre estas señales se encuentran los PAMPs/MAMPs (Pathogen/Microbe-Associated Molecular Patterns), que son moléculas de patógenos o microorganismos, o los DAMPs (Damaged-Associated Molecular Patterns), que son moléculas derivadas de las plantas producidas en respuesta a daño celular. Tras el reconocimiento de los PAMPs/DAMPs por receptores de membrana denominados PRRs (Pattern Recognition Receptors), como los receptores con dominio quinasa (RLKs) o los receptores sin dominio quinasa (RLPs), se activan respuestas moleculares, incluidas cascadas de MAP quinasas, que regulan la puesta en marcha de la inmunidad activada por PAMPs (PTI). Esta Tesis describe la caracterización funcional de la MAP quinasa quinasa quinasa (MAP3K) YODA (YDA), que actúa como un regulador clave de la PTI en Arabidopsis. Se ha descrito previamente que YDA controla varios procesos de desarrollo, como la regulación del patrón estomático, la elongación del zigoto y la arquitectura floral. Hemos caracterizado un alelo mutante hipomórfico de YDA (elk2 o yda11) que presenta una elevada susceptibilidad a patógenos biótrofos y necrótrofos. Notablemente, plantas que expresan una forma constitutivamente activa de YDA (CA-YDA), con una deleción en el dominio N-terminal, presentan una resistencia de amplio espectro frente a diferentes tipos de patógenos, incluyendo hongos, oomicetos y bacterias, lo que indica que YDA juega un papel importante en la regulación de la resistencia de las plantas a patógenos. Nuestros datos indican que esta función es independiente de las respuestas inmunes mediadas por los receptores previamente caracterizados FLS2 y CERK1, que reconocen los PAMPs flg22 y quitina, respectivamente, y que están implicados en la resistencia de Arabidopsis frente a bacterias y hongos. Hemos demostrado que YDA controla la resistencia frente al hongo necrótrofo Plectosphaerella cucumerina y el patrón estomático mediante su interacción genética con la RLK ERECTA (ER), un PRR implicado en la regulación de estos procesos. Por el contrario, la interacción genética entre ER y YDA en la regulación de otros procesos de desarrollo es aditiva en lugar de epistática. Análisis genéticos indicaron que MPK3, una MAP quinasa que funciona aguas abajo de YDA en el desarrollo estomático, es un componente de la ruta de señalización mediada por YDA para la resistencia frente a P. cucumerina, lo que sugiere que el desarrollo de las plantas y la PTI comparten el módulo de transducción de MAP quinasas asociado a YDA. Nuestros experimentos han revelado que la resistencia mediada por YDA es independiente de las rutas de señalización reguladas por las hormonas de defensa ácido salicílico, ácido jasmónico, ácido abscísico o etileno, y también es independiente de la ruta de metabolitos secundarios derivados del triptófano, que están implicados en inmunidad vegetal. Además, hemos demostrado que respuestas asociadas a PTI, como el aumento en la concentración de calcio citoplásmico, la producción de especies reactivas de oxígeno, la fosforilación de MAP quinasas y la expresión de genes de defensa, no están afectadas en el mutante yda11. La expresión constitutiva de la proteína CA-YDA en plantas de Arabidopsis no provoca un aumento de las respuestas PTI, lo que sugiere la existencia de mecanismos de resistencia adicionales regulados por YDA que son diferentes de los regulados por FLS2 y CERK1. En línea con estos resultados, nuestros datos transcriptómicos revelan una sobre-representación en plantas CA-YDA de genes de defensa que codifican, por ejemplo, péptidos antimicrobianos o reguladores de muerte celular, o proteínas implicadas en la biogénesis de la pared celular, lo que sugiere una conexión potencial entre la composición e integridad de la pared celular y la resistencia de amplio espectro mediada por YDA. Además, análisis de fosfoproteómica indican la fosforilación diferencial de proteínas relacionadas con la pared celular en plantas CA-YDA en comparación con plantas silvestres. El posible papel de la ruta ER-YDA en la regulación de la integridad de la pared celular está apoyado por análisis bioquímicos y glicómicos de las paredes celulares de plantas er, yda11 y CA-YDA, que revelaron cambios significativos en la composición de la pared celular de estos genotipos en comparación con la de plantas silvestres. En resumen, nuestros datos indican que ER y YDA forman parte de una nueva ruta de inmunidad que regula la integridad de la pared celular y respuestas defensivas, confiriendo una resistencia de amplio espectro frente a patógenos. ABSTRACT Plant mitogen-activated protein kinase (MAPK) cascades transduce environmental signals and developmental cues into cellular responses. Among these signals are the pathogen- or microbe-associated molecular patterns (PAMPs or MAMPs) and the damage-associated molecular patterns (DAMPs). These PAMPs/DAMPs, upon recognition by plant pattern recognition receptors (PRRs), such as Receptor-Like Kinases (RLKs) and Receptor-Like Proteins (RLPs), activate molecular responses, including MAPK cascades, which regulate the onset of PAMP-triggered immunity (PTI). This Thesis describes the functional characterization of the MAPK kinase kinase (MAP3K) YODA (YDA) as a key regulator of Arabidopsis PTI. YDA has been previously described to control several developmental processes, such as stomatal patterning, zygote elongation and inflorescence architecture. We characterized a hypomorphic, non-embryo lethal mutant allele of YDA (elk2 or yda11) that was found to be highly susceptible to biotrophic and necrotrophic pathogens. Remarkably, plants expressing a constitutive active form of YDA (CA-YDA), with a deletion in the N-terminal domain, showed broad-spectrum resistance to different types of pathogens, including fungi, oomycetes and bacteria, indicating that YDA plays a relevant function in plant resistance to pathogens. Our data indicated that this function is independent of the immune responses regulated by the well characterized FLS2 and CERK1 RLKs, which are the PRRs recognizing flg22 and chitin PAMPs, respectively, and are required for Arabidopsis resistance to bacteria and fungi. We demonstrate that YDA controls resistance to the necrotrophic fungus Plectosphaerella cucumerina and stomatal patterning by genetically interacting with ERECTA (ER) RLK, a PRR involved in regulating these processes. In contrast, the genetic interaction between ER and YDA in the regulation of other ER-associated developmental processes was additive, rather than epistatic. Genetic analyses indicated that MPK3, a MAP kinase that functions downstream of YDA in stomatal development, also regulates plant resistance to P. cucumerina in a YDA-dependent manner, suggesting that the YDA-associated MAPK transduction module is shared in plant development and PTI. Our experiments revealed that YDA-mediated resistance was independent of signalling pathways regulated by defensive hormones like salicylic acid, jasmonic acid, abscisic acid or ethylene, and of the tryptophan-derived metabolites pathway, which are involved in plant immunity. In addition, we showed that PAMP-mediated PTI responses, such as the increase of cytoplasmic Ca2+ concentration, reactive oxygen species (ROS) burst, MAPK phosphorylation, and expression of defense-related genes are not impaired in the yda11 mutant. Furthermore, the expression of CA-YDA protein does not result in enhanced PTI responses, further suggesting the existence of additional mechanisms of resistance regulated by YDA that differ from those regulated by the PTI receptors FLS2 and CERK1. In line with these observations, our transcriptomic data revealed the over-representation in CA-YDA plants of defensive genes, such as those encoding antimicrobial peptides and cell death regulators, and genes encoding cell wall-related proteins, suggesting a potential link between plant cell wall composition and integrity and broad spectrum resistance mediated by YDA. In addition, phosphoproteomic data revealed an over-representation of genes encoding wall-related proteins in CA-YDA plants in comparison with wild-type plants. The putative role of the ER-YDA pathway in regulating cell wall integrity was further supported by biochemical and glycomics analyses of er, yda11 and CA-YDA cell walls, which revealed significant changes in the cell wall composition of these genotypes compared with that of wild-type plants. In summary, our data indicate that ER and YDA are components of a novel immune pathway that regulates cell wall integrity and defensive responses, which confer broad-spectrum resistance to pathogens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CTXφ is a filamentous bacteriophage that encodes cholera toxin, the principal virulence factor of Vibrio cholerae. CTXφ is unusual among filamentous phages because it encodes a repressor and forms lysogens. CTXφ can infect the existing live-attenuated V. cholerae vaccine strains derived from either the El Tor or classical V. cholerae biotypes and result in vaccine reversion to toxinogenicity. Intraintestinal CTXφ transduction assays were used to demonstrate that El Tor biotype strains of V. cholerae are immune to infection with the El Tor-derived CTXφ, whereas classical strains are not. The El Tor CTXφ repressor, RstR, was sufficient to render classical strains immune to infection with the El Tor CTXφ. The DNA sequences of the classical and El Tor CTXφ repressors and their presumed cognate operators are highly diverged, whereas the sequences that surround this “immunity” region are nearly identical. Transcriptional fusion studies revealed that the El Tor RstR mediated repression of an El Tor rstA-lacZ fusion but did not repress a classical rstA-lacZ fusion. Likewise, the classical RstR only repressed a classical rstA-lacZ fusion. Thus, similar to the mechanistic basis for heteroimmunity among lambdoid phages, the specificity of CTXφ immunity is based on the divergence of the sequences of repressors and their operators. Expression of the El Tor rstR in either El Tor or classical live-attenuated V. cholerae vaccine strains effectively protected these vaccines from CTXφ infection. Introduction of rstR into V. cholerae vaccine strains should enhance their biosafety.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study aimed to exploit bacterial artificial chromosomes (BAC) as large antigen-capacity DNA vaccines (BAC-VAC) against complex pathogens, such as herpes simplex virus 1 (HSV-1). The 152-kbp HSV-1 genome recently has been cloned as an F-plasmid-based BAC in Escherichia coli (fHSV), which can efficiently produce infectious virus progeny upon transfection into mammalian cells. A safe modification of fHSV, fHSVΔpac, does not give rise to progeny virus because the signals necessary to package DNA into virions have been excluded. However, in mammalian cells fHSVΔpac DNA can still replicate, express the HSV-1 genes, cause cytotoxic effects, and produce virus-like particles. Because these functions mimic the lytic cycle of the HSV-1 infection, fHSVΔpac was expected to stimulate the immune system as efficiently as a modified live virus vaccine. To test this hypothesis, mice were immunized with fHSVΔpac DNA applied intradermally by gold-particle bombardment, and the immune responses were compared with those induced by infection with disabled infectious single cycle HSV-1. Immunization with either fHSVΔpac or disabled infectious single cycle HSV-1 induced the priming of HSV-1-specific cytotoxic T cells and the production of virus-specific antibodies and conferred protection against intracerebral injection of wild-type HSV-1 at a dose of 200 LD50. Protection probably was cell-mediated, as transfer of serum from immunized mice did not protect naive animals. We conclude that BAC-VACs per se, or in combination with genetic elements that support replicative amplification of the DNA in the cell nucleus, represent a useful new generation of DNA-based vaccination strategies for many viral and nonviral antigens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We conducted a Phase I clinical trial investigating the biologic activity of vaccination with irradiated autologous melanoma cells engineered to secrete human granulocyte–macrophage colony-stimulating factor in patients with metastatic melanoma. Immunization sites were intensely infiltrated with T lymphocytes, dendritic cells, macrophages, and eosinophils in all 21 evaluable patients. Although metastatic lesions resected before vaccination were minimally infiltrated with cells of the immune system in all patients, metastatic lesions resected after vaccination were densely infiltrated with T lymphocytes and plasma cells and showed extensive tumor destruction (at least 80%), fibrosis, and edema in 11 of 16 patients examined. Antimelanoma cytotoxic T cell and antibody responses were associated with tumor destruction. These results demonstrate that vaccination with irradiated autologous melanoma cells engineered to secrete granulocyte–macrophage colony-stimulating factor stimulates potent antitumor immunity in humans with metastatic melanoma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conventional wisdom holds that phase variation is a mechanism for immune evasion. However, despite fimbrial phase variation, mice previously exposed to Salmonella typhimurium are protected against a subsequent challenge. We evaluated whether lpf phase variation instead may be a mechanism to evade cross-immunity between Salmonella serotypes. Mice were immunized orally with S. typhimurium aroA mutants either that expressed the lpf operon (phase-on variant) or in which the entire lpf operon had been removed by deletion. During a subsequent challenge with virulent Salmonella enteritidis a selection against lpf phase-on variants was observed in mice previously exposed to S. typhimurium long polar fimbriae. Vaccination with S. typhimurium did not confer protection against challenge with S. enteritidis, presumably because lpf phase-off variants were able to evade cross-immunity. We propose that lpf phase variation is a mechanism to evade cross-immunity between Salmonella serotypes, thereby allowing their coexistence in a host population.