977 resultados para transforming growth factor-beta1
Resumo:
Macrophages play a critical role in intestinal wound repair. However, the mechanisms of macrophage-assisted wound repair remain poorly understood. We aimed to characterize more clearly the repair activities of murine and human macrophages. Murine macrophages were differentiated from bone marrow cells and human macrophages from monocytes isolated from peripheral blood mononuclear cells of healthy donors (HD) or Crohn's disease (CD) patients or isolated from the intestinal mucosa of HD. In-vitro models were used to study the repair activities of macrophages. We found that murine and human macrophages were both able to promote epithelial repair in vitro. This function was mainly cell contact-independent and relied upon the production of soluble factors such as the hepatocyte growth factor (HGF). Indeed, HGF-silenced macrophages were less capable of promoting epithelial repair than control macrophages. Remarkably, macrophages from CD patients produced less HGF than their HD counterparts (HGF level: 84âeuro0/00±âeuro0/0027âeuro0/00pg/mg of protein and 45âeuro0/00±âeuro0/0034âeuro0/00pg/mg of protein, respectively, for HD and CD macrophages, Pâeuro0/00<âeuro0/000·009) and were deficient in promoting epithelial repair (repairing activity: 90·1âeuro0/00±âeuro0/004·6 and 75·8âeuro0/00±âeuro0/008·3, respectively, for HD and CD macrophages, Pâeuro0/00<âeuro0/000·0005). In conclusion, we provide evidence that macrophages act on wounded epithelial cells to promote epithelial repair through the secretion of HGF. The deficiency of CD macrophages to secrete HGF and to promote epithelial repair might contribute to the impaired intestinal mucosal healing in CD patients.
Resumo:
The epidermal growth factor receptor (EGFR) is a member of the tyrosine kinase receptor family involved in signal transduction and the regulation of cellular proliferation and differentiation. It is also a calmodulin-binding protein. To examine the role of calmodulin in the regulation of EGFR, the effect of calmodulin antagonist, W-13, on the intracellular trafficking of EGFR and the MAPK signaling pathway was analyzed. W-13 did not alter the internalization of EGFR but inhibited its recycling and degradation, thus causing the accumulation of EGF and EGFR in enlarged early endosomal structures. In addition, we demonstrated that W-13 stimulated the tyrosine phosphorylation of EGFR and consequent recruitment of Shc adaptor protein with EGFR, presumably through inhibition of the calmodulin-dependent protein kinase II (CaM kinase II). W-13¿mediated EGFR phosphorylation was blocked by metalloprotease inhibitor, BB94, indicating a possible involvement of shedding in this process. However, MAPK activity was decreased by W-13; dissection of this signaling pathway showed that W-13 specifically interferes with Raf-1 activity. These data are consistent with the regulation of EGFR by calmodulin at several steps of the receptor signaling and trafficking pathways.
Resumo:
Background and aims: The extent and molecular mechanisms governing plasma extravasation and formation of ascites in cirrhosis are unknown. Vascular endothelial growth factor-A (VEGF-A) and angiopoietin-2 (Ang-2) are endogenous substances with powerful vascular permeability effects. We assessed regional blood flow, vascular leakage, mRNA and tissular expression of VEGF-A and Ang-2 and vascular permeability following VEGF receptor 2 blockade in control and cirrhotic rats to define the vascular territories showing altered vascular permeability in cirrhosis and to determine whether VEGF-A and Ang-2 are involved in this phenomenon. Methods: Arterial blood flow was analysed with the coloured microsphere method. Vascular leakage was measured and visualised with the dye Evan¿s Blue and colloidal carbon techniques, respectively. VEGF-A and Ang-2 expression were determined by real-time polymerase chain reaction (RT-PCR), immunohistochemistry and western blot. The effect on vascular permeability induced by VEGFR2 blockade was assessed by administration of the receptor inhibitor SU11248. Results: Arterial blood flow was increased in the mesentery, pancreas and small intestine but not in the kidney and spleen of cirrhotic rats as compared to controls. Increased vascular leakage was observed in the mesentery and liver, where colloidal carbon spread from microvessels to the adjacent fibrotic tracts. Increased hepatic and mesenteric expression of VEGF-A and Ang-2 was found in cirrhotic rats as compared to controls. Blockade of VEGFR2 markedly reduced hepatic and mesenteric vascular leakage in cirrhotic rats. Conclusions: Enhanced endothelial permeability is restricted to the hepatic and mesenteric vascular beds in cirrhotic rats with ascites and VEGF-A and Ang-2 are key factors in the signalling pathways regulating this dysfunction.
Resumo:
Tumors are often compared to wounds that do not heal, where the crosstalk between tumor cells and their surrounding stroma is crucial at all stages of development, from the initial primary growth to metastasis. Similar to wound healing, fibroblasts in the tumor stroma differentiate into myofibroblasts, also referred to as "cancer-associated fibroblasts" (CAFs), primarily, but not exclusively, in response to transforming growth factor-ß (TGF-ß). Myofibroblasts in turn enhance tumor progression by remodeling the stroma. Among molecules implicated in stroma remodeling, matrix metalloproteinases (MMPs), and MMP-g in particular, play a prominent role. However, the mechanisms that regulate MMP-g activation and function remain poorly understood. Recent evidence indicates that tumor cell surface association of MMP-g is an important event in its activation, and more generally in tumor growth and invasion. In the present work we address the potential association of MMP-g activity with cell-surface recruitment to human fibroblasts. We show for the first time that recruitment of MMP-g to the MRC-5 fibroblast cell surface occurs through the fibronectin-like (FN) domain, shared only by MMP-g and MMP-2 among all the MMPs. Functional assays suggest that both the pro- and active form of MMP-g trigger a-smooth muscle actin (aSMA) expression in resting fibroblasts that reflects myofibroblast differentiation, possibly through TGF-ß activation. Moreover, the FN domain of MMP-g inhibits both MMP-g-induced TGF-ß activation and aSMA expression by sequestering MMP-g. Xenograft experiments in NOD/SCID mice using HT1080 fibrosarcoma or MDA-MD231 breast adenocarcinoma cells stably expressing the FN domain of MMP-g revealed no changes in primary tumor growth. However, in the context of metastasis, expression of the FN domain by these same tumor cells dramatically increased their metastatic proclivity whereas expression of wt MMP-g either promoted no change or actually reduced the number of metastases. We observed a decrease of an active form of MMP-g in MDA-MB231 cells overexpressing the FN domain suggesting that the FN domain may inhibit MMP-g activity in Tumors are often compared to wounds that do not heal, where the crosstalk between tumor cells and their surrounding stroma is crucial at all stages of development, from the initial primary growth to metastasis. Similar to wound healing, fibroblasts in the tumor stroma differentiate into myofibroblasts, also referred to as "cancer-associated fibroblasts" (CAFs), primarily, but not exclusively, in response to transforming growth factor-ß (TGF-ß). Myofibroblasts in turn enhance tumor progression by remodeling the stroma. Among molecules implicated in stroma remodeling, matrix metalloproteinases (MMPs), and MMP-g in particular, play a prominent role. However, the mechanisms that regulate MMP-g activation and function remain poorly understood. Recent evidence indicates that tumor cell surface association of MMP-g is an important event in its activation, and more generally in tumor growth and invasion. In the present work we address the potential association of MMP-g activity with cell-surface recruitment to human fibroblasts. We show for the first time that recruitment of MMP-g to the MRC-5 fibroblast cell surface occurs through the fibronectin-like (FN) domain, shared only by MMP-g and MMP-2 among all the MMPs. Functional assays suggest that both the pro- and active form of MMP-g trigger a-smooth muscle actin (aSMA) expression in resting fibroblasts that reflects myofibroblast differentiation, possibly through TGF-ß activation. Moreover, the FN domain of MMP-g inhibits both MMP-g-induced TGF-ß activation and aSMA expression by sequestering MMP-g. Xenograft experiments in NOD/SCID mice using HT1080 fibrosarcoma or MDA-MD231 breast adenocarcinoma cells stably expressing the FN domain of MMP-9 revealed no changes in primary tumor growth. However, in the context of metastasis, expression of the FN domain by these same tumor cells dramatically increased their metastatic proclivity whereas expression of wt MMP-g either promoted no change or actually reduced the number of metastases. We observed a decrease of an active form of MMP-9 in MDA-MB231 cells overexpressing the FN domain suggesting that the FN domain may inhibit MMP-9 activity in those cells and therefore prevent MMP-9-induced activation of TGF-b, which results in increased invasion. Curiously, xenografts of SW480 colorectal adenocarcinoma cells stably expressing the FN domain of MMP-9 displayed reduced growth at both the primary (subcutaneous) injection site and the lungs of NOD/SCID mice, in experimental metastasis assays, whilst the same cells overexpressing wt MMP-9 showed enhanced growth and dissemination. Gelatin zymography of conditioned medium revealed that these effects may be due to the FN domain, which displaces MMP-9 from SW480 cell surface. These observations suggest a dual role of MMP-9 and its FN domain in primary tumor growth and metastasis, underscoring the notion that the effect of MMP-9 on tumor cells may depend on the cell type and highlighting possible protective effects of MMPs in tumor progression.
Resumo:
The pubertal height growth spurt is a distinctive feature of childhood growth reflecting both the central onset of puberty and local growth factors. Although little is known about the underlying genetics, growth variability during puberty correlates with adult risks for hormone-dependent cancer and adverse cardiometabolic health. The only gene so far associated with pubertal height growth, LIN28B, pleiotropically influences childhood growth, puberty and cancer progression, pointing to shared underlying mechanisms. To discover genetic loci influencing pubertal height and growth and to place them in context of overall growth and maturation, we performed genome-wide association meta-analyses in 18 737 European samples utilizing longitudinally collected height measurements. We found significant associations (P < 1.67 × 10(-8)) at 10 loci, including LIN28B. Five loci associated with pubertal timing, all impacting multiple aspects of growth. In particular, a novel variant correlated with expression of MAPK3, and associated both with increased prepubertal growth and earlier menarche. Another variant near ADCY3-POMC associated with increased body mass index, reduced pubertal growth and earlier puberty. Whereas epidemiological correlations suggest that early puberty marks a pathway from rapid prepubertal growth to reduced final height and adult obesity, our study shows that individual loci associating with pubertal growth have variable longitudinal growth patterns that may differ from epidemiological observations. Overall, this study uncovers part of the complex genetic architecture linking pubertal height growth, the timing of puberty and childhood obesity and provides new information to pinpoint processes linking these traits.
Insulin and insulin-like growth factor I receptors utilize different G protein signaling components.
Resumo:
We examined the role of heterotrimeric G protein signaling components in insulin and insulin-like growth factor I (IGF-I) action. In HIRcB cells and in 3T3L1 adipocytes, treatment with the Galpha(i) inhibitor (pertussis toxin) or microinjection of the Gbetagamma inhibitor (glutathione S-transferase-betaARK) inhibited IGF-I and lysophosphatidic acid-stimulated mitogenesis but had no effect on epidermal growth factor (EGF) or insulin action. In basal state, Galpha(i) and Gbeta were associated with the IGF-I receptor (IGF-IR), and after ligand stimulation the association of IGF-IR with Galpha(i) increased concomitantly with a decrease in Gbeta association. No association of Galpha(i) was found with either the insulin or EGF receptor. Microinjection of anti-beta-arrestin-1 antibody specifically inhibited IGF-I mitogenic action but had no effect on EGF or insulin action. beta-Arrestin-1 was associated with the receptors for IGF-I, insulin, and EGF in a ligand-dependent manner. We demonstrated that Galpha(i), betagamma subunits, and beta-arrestin-1 all play a critical role in IGF-I mitogenic signaling. In contrast, neither metabolic, such as GLUT4 translocation, nor mitogenic signaling by insulin is dependent on these protein components. These results suggest that insulin receptors and IGF-IRs can function as G protein-coupled receptors and engage different G protein partners for downstream signaling.
Resumo:
PURPOSE: To investigate the ability of fibroblast growth factor (FGF) 2-saporin to prevent lens regrowth in the rabbit. METHODS: Chemically conjugated and genetically fused FGF2-saporin (made in Escherichia coli) were used. Extracapsular extraction of the lens was performed on the rabbit, and the cytotoxin either was injected directly into the capsule bag or was administered by FGF2-saporin-coated, heparin surface-modified (HSM) polymethylmethacrylate intraocular lenses. The potential of the conjugate was checked by slit lamp evaluation of capsular opacification and by measuring crystallin synthesis. Toxin diffusion and sites of toxin binding were assessed by immunohistochemistry. Possible toxicity was determined by histologic analysis of ocular tissues. RESULTS: FGF2-saporin effectively inhibited lens regrowth when it was injected directly into the capsular bag. However, high concentration of the toxin induced transient corneal edema and loss of pigment in the iris. Intraocular lenses coated with FGF2-saporin reduced lens regrowth and crystallin synthesis without any detectable clinical side effect. After implantation, FGF2-saporin was shown to have bound to the capsules and, to a lesser extent, to the iris; no histologic damage was found on ocular tissues as a result of implantation of drug-loaded HSM intraocular lenses. CONCLUSIONS: Chemically conjugated (FGF2-SAP) and genetically fused FGF2-saporin (rFGF2-SAP) bound to HSM intraocular lenses can prevent lens regrowth in the rabbit.
Resumo:
PURPOSE: To analyze in vivo the function of chicken acidic leucine-rich epidermal growth factor-like domain containing brain protein/Neuroglycan C (gene symbol: Cspg5) during retinal degeneration in the Rpe65⁻/⁻ mouse model of Leber congenital amaurosis. METHODS: We resorted to mice with targeted deletions in the Cspg5 and retinal pigment epithelium protein of 65 kDa (Rpe65) genes (Cspg5⁻/⁻/Rpe65⁻/⁻). Cone degeneration was assessed with cone-specific peanut agglutinin staining. Transcriptional expression of rhodopsin (Rho), S-opsin (Opn1sw), M-opsin (Opn1mw), rod transducin α subunit (Gnat1), and cone transducin α subunit (Gnat2) genes was assessed with quantitative PCR from 2 weeks to 12 months. The retinal pigment epithelium (RPE) was analyzed at P14 with immunodetection of the retinol-binding protein membrane receptor Stra6. RESULTS: No differences in the progression of retinal degeneration were observed between the Rpe65⁻/⁻ and Cspg5⁻/⁻/Rpe65⁻/⁻ mice. No retinal phenotype was detected in the late postnatal and adult Cspg5⁻/⁻ mice, when compared to the wild-type mice. CONCLUSIONS: Despite the previously reported upregulation of Cspg5 during retinal degeneration in Rpe65⁻/⁻ mice, no protective effect or any involvement of Cspg5 in disease progression was identified.
Resumo:
PURPOSE: Glioblastomas are notorious for resistance to therapy, which has been attributed to DNA-repair proficiency, a multitude of deregulated molecular pathways, and, more recently, to the particular biologic behavior of tumor stem-like cells. Here, we aimed to identify molecular profiles specific for treatment resistance to the current standard of care of concomitant chemoradiotherapy with the alkylating agent temozolomide. PATIENTS AND METHODS: Gene expression profiles of 80 glioblastomas were interrogated for associations with resistance to therapy. Patients were treated within clinical trials testing the addition of concomitant and adjuvant temozolomide to radiotherapy. RESULTS: An expression signature dominated by HOX genes, which comprises Prominin-1 (CD133), emerged as a predictor for poor survival in patients treated with concomitant chemoradiotherapy (n = 42; hazard ratio = 2.69; 95% CI, 1.38 to 5.26; P = .004). This association could be validated in an independent data set. Provocatively, the HOX cluster was reminiscent of a "self-renewal" signature (P = .008; Gene Set Enrichment Analysis) recently characterized in a mouse leukemia model. The HOX signature and EGFR expression were independent prognostic factors in multivariate analysis, adjusted for the O-6-methylguanine-DNA methyltransferase (MGMT) methylation status, a known predictive factor for benefit from temozolomide, and age. Better outcome was associated with gene clusters characterizing features of tumor-host interaction including tumor vascularization and cell adhesion, and innate immune response. CONCLUSION: This study provides first clinical evidence for the implication of a "glioma stem cell" or "self-renewal" phenotype in treatment resistance of glioblastoma. Biologic mechanisms identified here to be relevant for resistance will guide future targeted therapies and respective marker development for individualized treatment and patient selection.
Resumo:
Acute normocapnic hypoxemia can cause functional renal insufficiency by increasing renal vascular resistance (RVR), leading to renal hypoperfusion and decreased glomerular filtration rate (GFR). Insulin-like growth factor 1 (IGF-1) activity is low in fetuses and newborns and further decreases during hypoxia. IGF-1 administration to humans and adult animals induces pre- and postglomerular vasodilation, thereby increasing GFR and renal blood flow (RBF). A potential protective effect of IGF-1 on renal function was evaluated in newborn rabbits with hypoxemia-induced renal insufficiency. Renal function and hemodynamic parameters were assessed in 17 anesthetized and mechanically ventilated newborn rabbits. After hypoxemia stabilization, saline solution (time control) or IGF-1 (1 mg/kg) was given as an intravenous (i.v.) bolus, and renal function was determined for six 30-min periods. Normocapnic hypoxemia significantly increased RVR (+16%), leading to decreased GFR (-14%), RBF (-19%) and diuresis (-12%), with an increased filtration fraction (FF). Saline solution resulted in a worsening of parameters affected by hypoxemia. Contrarily, although mean blood pressure decreased slightly but significantly, IGF-1 prevented a further increase in RVR, with subsequent improvement of GFR, RBF and diuresis. FF indicated relative postglomerular vasodilation. Although hypoxemia-induced acute renal failure was not completely prevented, IGF-1 elicited efferent vasodilation, thereby precluding a further decline in renal function.
Resumo:
The addition of nerve growth factor (2.5S NGF) to serum-free aggregating cell cultures of fetal rat telencephalon greatly stimulated the developmental increase in choline acetyltransferase activity. Two other neuronal enzymes, acetylcholinesterase and glutamic acid decarboxylase, showed only slightly increased activities after NGF treatment whereas the total protein content of the cultures and the activity of 2',3'- cyclic nucleotide phosphodiesterase remained unchanged. The stimulation of choline acetyltransferase was dependent on the NGF media concentrations, showing a 50% maximum effect (120% increase) at approximately 3 ng/ml (10-10 M 2.5S NGF). NGF treatments during different culture periods showed that the cholinergic neurons remained responsive for at least 19 days. The continued treatment was the most effective; however, an initial treatment for only 5 days still caused a significant stimulation of choline acetyltransferase on day 19. The observed stimulation appeared to be specific to NGF. Univalent antibody fragments (Fab) against 2.5S NGF completely abolished the NGF-dependent increase in choline acetyltransferase activity, whereas Fab fragments of control IgG were ineffective. Furthermore, angiotensin II, added in high amounts to the cultures, showed no stimulatory effect. The present results suggest that certain populations of rat brain neurons are responsive to nerve growth factor.
Resumo:
FGFR1 mutations have been identified in both Kallmann syndrome and normosmic HH (nIHH). To date, few mutations in the FGFR1 gene have been structurally or functionally characterized in vitro to identify molecular mechanisms that contribute to the disease pathogenesis. We attempted to define the in vitro functionality of two FGFR1 mutants (R254W and R254Q), resulting from two different amino acid substitutions of the same residue, and to correlate the in vitro findings to the patient phenotypes. Two unrelated GnRH deficient probands were found to harbor mutations in FGFR1 (R254W and R254Q). Mutant signaling activity and expression levels were evaluated in vitro and compared to a wild type (WT) receptor. Signaling activity was determined by a FGF2/FGFR1 dependent transcription reporter assay. Receptor total expression levels were assessed by Western blot and cell surface expression was measured by a radiolabeled antibody binding assay. The R254W maximal receptor signaling capacity was reduced by 45% (p<0.01) while R254Q activity was not different from WT. However, both mutants displayed diminished total protein expression levels (40 and 30% reduction relative to WT, respectively), while protein maturation was unaffected. Accordingly, cell surface expression levels of the mutant receptors were also significantly reduced (35% p<0.01 and 15% p<0.05, respectively). The p.R254W and p.R254Q are both loss-of-function mutations as demonstrated by their reduced overall and cell surface expression levels suggesting a deleterious effect on receptor folding and stability. It appears that a tryptophan substitution at R254 is more disruptive to receptor structure than the more conserved glutamine substitution. No clear correlation between the severity of in vitro loss-of-function and phenotypic presentation could be assigned.
Resumo:
Tyrosine kinase receptors lead to rapid activation of phosphatidylinositol 3-kinase (PI3 kinase) and the subsequent formation of phosphatidylinositides (PtdIns) 3,4-P2 and PtdIns 3,4, 5-P3, which are thought to be involved in signaling for glucose transporter GLUT4 translocation, cytoskeletal rearrangement, and DNA synthesis. However, the specific role of each of these PtdIns in insulin and growth factor signaling is still mainly unknown. Therefore, we assessed, in the current study, the effect of SH2-containing inositol phosphatase (SHIP) expression on these biological effects. SHIP is a 5' phosphatase that decreases the intracellular levels of PtdIns 3,4,5-P3. Expression of SHIP after nuclear microinjection in 3T3-L1 adipocytes inhibited insulin-induced GLUT4 translocation by 100 +/- 21% (mean +/- the standard error) at submaximal (3 ng/ml) and 64 +/- 5% at maximal (10 ng/ml) insulin concentrations (P < 0.05 and P < 0.001, respectively). A catalytically inactive mutant of SHIP had no effect on insulin-induced GLUT4 translocation. Furthermore, SHIP also abolished GLUT4 translocation induced by a membrane-targeted catalytic subunit of PI3 kinase. In addition, insulin-, insulin-like growth factor I (IGF-I)-, and platelet-derived growth factor-induced cytoskeletal rearrangement, i.e., membrane ruffling, was significantly inhibited (78 +/- 10, 64 +/- 3, and 62 +/- 5%, respectively; P < 0.05 for all) in 3T3-L1 adipocytes. In a rat fibroblast cell line overexpressing the human insulin receptor (HIRc-B), SHIP inhibited membrane ruffling induced by insulin and IGF-I by 76 +/- 3% (P < 0.001) and 68 +/- 5% (P < 0.005), respectively. However, growth factor-induced stress fiber breakdown was not affected by SHIP expression. Finally, SHIP decreased significantly growth factor-induced mitogen-activated protein kinase activation and DNA synthesis. Expression of the catalytically inactive mutant had no effect on these cellular responses. In summary, our results show that expression of SHIP inhibits insulin-induced GLUT4 translocation, growth factor-induced membrane ruffling, and DNA synthesis, indicating that PtdIns 3,4,5-P3 is the key phospholipid product mediating these biological actions.
Resumo:
The Ca(2+)-regulated calcineurin/nuclear factor of activated T cells (NFAT) cascade controls alternative pathways of T-cell activation and peripheral tolerance. Here, we describe reduction of NFATc2 mRNA expression in the lungs of patients with bronchial adenocarcinoma. In a murine model of bronchoalveolar adenocarcinoma, mice lacking NFATc2 developed more and larger solid tumors than wild-type littermates. The extent of central tumor necrosis was decreased in the tumors in NFATc2((-/-)) mice, and this finding was associated with reduced tumor necrosis factor-alpha and interleukin-2 (IL-2) production by CD8(+) T cells. Adoptive transfer of CD8(+) T cells of NFATc2((-/-)) mice induced transforming growth factor-beta(1) in the airways of recipient mice, thus supporting CD4(+)CD25(+)Foxp-3(+)glucocorticoid-induced tumor necrosis factor receptor (GITR)(+) regulatory T (T(reg)) cell survival. Finally, engagement of GITR in NFATc2((-/-)) mice induced IFN-gamma levels in the airways, reversed the suppression by T(reg) cells, and costimulated effector CD4(+)CD25(+) (IL-2Ralpha) and memory CD4(+)CD127(+) (IL-7Ralpha) T cells, resulting in abrogation of carcinoma progression. Agonistic signaling through GITR, in the absence of NFATc2, thus emerges as a novel possible strategy for the treatment of human bronchial adenocarcinoma in the absence of NFATc2 by enhancing IL-2Ralpha(+) effector and IL-7Ralpha(+) memory-expressing T cells.