964 resultados para total amino acids
Resumo:
The present work aimed the study of phenolic acids composition in apple pomace of Gala and Fuji cultivars. Phenolic acids were fractionated in phenolic acids, esterified and insoluble and analyzed by gas chromatography-mass spectrometry (GC-MS). Sixteen phenolic acids were identified in apple pomace samples. Total phenolic acids in apple pomace from Gala and Fuji cultivars were, in dry weight, 93.94 mg/g and 68.38 mg/g, respectively. Content of free phenolic acids in apple pomace from Gala cultivar was 29.11 mg/g and the following acids were identified: salicylic, protocatequinic, quinic, p-coumaric, gallic, propylgallate and synapic. Content of free phenolic acids in apple pomace from Fuji cultivar was 16.03 mg/g and the following acids were identified: salicylic, protocatequinic, gallic, ferulic and sinapic. Salicylic was the predominant free phenolic acids found in both cultivars, consisting of 91.67% and 63.57% of the free phenolic acids in Gala and Fuji cultivars, respectively. Chlorogenic acid (1.147 mg/g) was found only in apple pomace from Fuji cultivar. Content of esterified phenolic acids in apple pomace from Gala and Fuji cultivars were 53.75 mg/g and 48.29 mg/g, respectively. It was verified that the predominant esterified phenolic acid in pomace from apple Gala is derived from salicylic acid (52.76 mg/g). Acids derived from gallic acid (0.175 mg/g), propylgallate acid (0.198 mg/g), ferulic acid (0.159 mg/g) and sinapic acid (0.140 mg/g) were also found in Gala cultivar. Regarding to pomace from cultivar Fuji, the main esterified phenolic acid found is also derived from salicylic acid (47.42 mg/g) followed by gallic acid (0.270 mg/g), benzoic acid (0.194 mg/g) and sinapic acid (0.115 mg/g). Content of insoluble phenolic acids in apple pomace from Gala and Fugi cultivars were, in dry weight, 11.08 mg/g and 4.05 mg/g, respectively Insoluble phenolic acids derived from salicylic acid were found in higher concentrations in apple pomace from both cultivars.
Resumo:
Dolastatin units were synthesized from the 1,2-addition reactions of potassium allyl or crotyltrifluoroborate salts to aldehyde derivatives from natural amino acids. The reactions were carried out in presence of a phase-transfer catalyst in a biphasic medium at room temperature and excellent yields (>89-93%) and stereoselective (>90:10 to 98:2) were obtained. The dolastatin units 8 and 14a-b were obtained after three steps in good overall yields (50-62%). (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The aim of this work was to investigate the involvement of caspases in apoptosis induced by L-amino acid oxidase isolated from Bothrops atrox snake venom. The isolation of LAAO involved three chromatographic steps: molecular exclusion on a G-75 column; ion exchange column by HPLC and affinity chromatography on a Lentil Lectin column. SDS-PAGE was used to confirm the expected high purity level of BatroxLAA0. It is a glycoprotein with 12% sugar and an acidic character, as confirmed by its amino acid composition, rich in ""Asp and Glu"" residues. It displays high specificity toward hydrophobic L-amino acids. The N-terminal amino acid sequence and internal peptide sequences showed close structural homology to other snake venom LAAOs. This enzyme induces in vitro platelet aggregation, which may be due to H(2)O(2) production by LAAOs, since the addition of catalase completely inhibited the aggregation effect. It also showed cytotoxicity towards several cancer cell lines: HL60, Jurkat, B16F10 and PC12. The cytotoxicity activity was abolished by catalase. A fluorescence microscopy evaluation revealed a significant increase in the apoptotic index of these cells after BatroxLAAO treatment. This observation was confirmed by phosphatidyl serine exposure and activation of caspases. BatroxLAAO is a protein with various biological functions that can be involved in envenomation. Further investigations of its function will contribute to toxicology advances. Published by Elsevier Inc.
Resumo:
Xylem sap from woody species in the wet/dry tropics of northern Australia was analyzed for N compounds. At the peak of the dry season, arginine was the main N compound in sap of most species of woodlands and deciduous monsoon forest. In the wet season, a marked change occurred with amides becoming the main sap N constituents of most species. Species from an evergreen monsoon forest, with a permanent water source, transported amides in the dry season. In the dry season, nitrate accounted for 7 and 12% of total xylem sap N in species of deciduous and evergreen monsoon forests, respectively In the wet season, the proportion of N present as nitrate increased to 22% in deciduous monsoon forest species. These results suggest that N is taken up and assimilated mainly in the wet season and that this newly assimilated N is mostly transported as amide-N (woodland species, monsoon forest species) and nitrate (monsoon forest species). Arginine is the form in which stored N is remobilized and transported by woodland and deciduous monsoon forest species in the dry season. Several proteins, which may represent bark storage proteins, were detected in inner bark tissue from a range of trees in the dry season, indicating that, although N uptake appears to be limited in the dry season, the many tree and shrub species that produce flowers, fruit or leaves in the dry season use stored N to support growth. Nitrogen characteristics of the studied species are discussed in relation to the tropical environment.
Resumo:
We investigate extra- and intracellular osmoregulatory capability in two species of hololimnetic Caridea and Anomura: Macrobrachium brasiliense, a palaemonid shrimp, and Aegla franca, an aeglid anomuran, both restricted to continental waters. We also appraise the sharing of physiological characteristics by the hololimnetic Decapoda, and their origins and role in the conquest of fresh water. Both species survive salinity exposure well. While overall hyperosmoregulatory capability is weak in A. franca and moderate in M. brasiliense, both species strongly hyporegulate hemolymph [Cl(-)] but not osmolality. Muscle total free amino acids (FAA) increase slowly but markedly in response to the rapid rise in hemolymph osmolality consequent to hyperosmotic challenge: 3.5-fold in A. franca and 1.9-fold in M. brasiliense. Glycine, taurine, arginine, alanine and proline constitute a parts per thousand 85% of muscle FAA pools in fresh water; taurine, arginine, alanine each contribute a parts per thousand 22% in A. franca, while glycine predominates (70%) in M. brasiliense. These FAA also show the greatest increases on salinity challenge. Muscle FAA titers correlate strongly (R = 0.82) with hemolymph osmolalities across the main decapod sub/infraorders, revealing that marine species with high hemolymph osmolalities achieve isosmoticity of the intra- and extracellular fluids partly through elevated intracellular FAA concentrations; freshwater species show low hemolymph osmolalities and exhibit reduced intracellular FAA titers, consistent with isosmoticity at a far lower external osmolality. Given the decapod phylogeny adopted here and their multiple, independent invasions of fresh water, particularly by the Caridea and Anomura, our findings suggest that homoplastic strategies underlie osmotic and ionic homeostasis in the extant freshwater Decapoda.
Resumo:
Protein, amino acids and ammonium were the main forms of soluble soil nitrogen in the soil solution of a subtropical heathland (wallum). After fire, soil ammonium and nitrate increased 90- and 60-fold, respectively. Despite this increase in nitrate availability after fire, wallum species exhibited uniformly low nitrate reductase activities and low leaf and xylem nitrate, During waterlogging soil amino acids increased, particularly gamma-aminobutyric acid (GABA) which accounted for over 50% of amino nitrogen. Non-mycorrhizal wallum species were significantly (P < 0.05) N-15-enriched (0.3-4.3 parts per thousand) compared to species with mycorrhizal associations (ericoid-type, ecto-, va-mycorrhizal) which were strongly depleted in N-15 (-6.3 to -1.8 parts per thousand). Lignotubers and roots had delta(15)N signatures similar to that of the leaves of respective species. The exceptions were fine roots of ecto-, ecto/va-, and ericoid type mycorrhizal species which were enriched in N-15 (0.1-2 4 parts per thousand). The delta(15)N signatures of delta(15)N(total soil N) and delta(15)N(soil NH4+) were in the range 3.7-4.5 parts per thousand, whereas delta(15)N(soil NO3-) was significantly (P < 0.05) more enriched in N-15 (9.2-9.8 parts per thousand). It is proposed that there is discrimination against N-15 during transfer of nitrogen from fungal to plant partner. Roots of selected species incorporated nitrogen sources in the order of preference: ammonium > glycine > nitrate. The exception were proteoid roots of Hakea (Proteaceae) which incorporated equal amounts of glycine and ammonium.
Resumo:
Objective: To evaluate effects of pre- and/or postnatal exposure to ambient fine particulate matter on fertilization, embryo development, and cell lineage segregation in preimplantation blastocysts using the IVF mouse model. Design: Animal model. Setting: Academic institution. Animal(S): Six-week-old, superovulated mice. Intervention(s): Pre- and postnatal exposure to filtered air (FA-FA), filtered-ambient air (FA-AA), or ambient air (AA-AA) in exposure chambers 24 hours a day for 9 weeks. Main Outcome Measure(S): Gestation length, litter size, sex ratio, ovarian response to superovulation, fertilization rate, embryo development, blastocyst and hatching rates, total cell count, and proportion of cell allocation to inner-cell mass (ICM) and trophectoderm (TE). Result(S): Gestation length, litter size and birth weight, live-birth index, and sex ratio were similar among exposure groups. Ovarian response was not affected by the exposure protocol. A multivariate effect for pre- and/or postnatal exposure to ambient fine particulate matter on IVF, embryo development, and blastocyst differential staining was found. Cell counts in ICM and ICM/TE ratios in blastocysts produced in the FA-FA protocol were significantly higher than in blastocysts produced in the FA-AA and AA-AA protocols. No difference in total cell count was observed among groups. Conclusion(S): Our study suggests that exposure to ambient fine particulate matter may negatively affect female reproductive health by disrupting the lineage specification at the blastocyst stage without interfering in early development of the mouse embryo. (Fertil Steril (R) 2009;92:1725-35. (C) 2009 by American Society for Reproductive Medicine.)
Resumo:
Objective: To examine the effects of two commercial media on the development of mouse ova fertilized in vitro to the blastocyst stage. Design: Animal model. Setting: Academic institution. Animal(s): Eight-week old, superovulated mice. Intervention(s): One-cell embryos cultured in vitro up to the blastocyst stage in potassium-enriched simplex optimized medium (KSOM) or G1/G2 medium. Main Outcome Measure(s): Blastocyst and hatching rates, total cell number count, and proportion of allocation of cells to the inner cell mass (ICM) and trophectoderm (TE). Result(s): The percentage of zygotes that developed to the blastocyst stage 96 and 120 hours after insemination was statistically significantly higher in the KSOM group. The percentage of blastocysts that partially or completely hatched by day 5 of culture was 84% and 71% for the KSOM and G1/G2 groups, respectively, showing a statistically significant difference between the groups. The mean number of ICM cells was 11.7 +/- 4.0 and 9.2 +/- 5.2 for the zygotes cultured in KSOM and G1/G2 media, respectively, revealing a statistically significantly higher cell number in the ICM of blastocysts derived from culture in KSOM medium. The ICM/TE ratio in the blastocysts cultured in KSOM or G1/G2 media was similar in both groups. Conclusion(s): Commercially available KSOM medium is superior to sequential G1/G2 media for culturing one-cell embryos up to the blastocyst stage in the mouse IVF model.
Resumo:
The transition from marine/brackish waters to freshwater habitats constitutes a severe osmotic and ionic challenge, and successful invasion has demanded the selection of morphological, physiological, biochemical and behavioral adaptations. We evaluated short-term (1 to 12 h exposure) and long-term (5 d acclimation), anisosmotic extracellular (osmolality, [Na(+), Cl(-)]) and long-term isosmotic intracellular osmoregulatory capability in Palaemon northropi, a neotropical intertidal shrimp. F northropi survives well and osmo- and ionoregulates strongly during short- and long-term exposure to 5-45 parts per thousand salinity, consistent with its rocky tide pool habitat subject to cyclic salinity fluctuations, Muscle total free amino acid (FAA) concentrations decreased by 63% in shrimp acclimated to 5%. salinity, revealing a role in hypoosmotic cell volume regulation; this decrease is mainly a consequence of diminished glycine, arginine and proline. Total FAA contributed 31% to muscle intracellular osmolality at 20 parts per thousand, an isosmotic salinity, and decreased to 13% after acclimation to 5 parts per thousand. Gill and nerve tissue FAA concentrations remained unaltered. These tissue-specific responses reflect efficient anisosmotic and anisoionic extracellular regulatory mechanisms, and reveal the dependence of muscle tissue on intracellular osmotic effectors. FAA concentration is higher in P. northropi than in diadromous and hololimnetic palaemonids, confirming muscle FAA concentration as a good parameter to evaluate the degree of adaptation to dilute media. The osmoregulatory capability of P. northropi may reflect the potential physiological capacity of ancestral marine palaemonids to penetrate into dilute media, and reveals the importance of evaluating osmoregulatory processes in endeavors to comprehend the invasion of dilute media by ancestral marine crustaceans.
Resumo:
Background/Aims: Transmethylation reactions and antioxidant metabolism are linked by transsulfuration, where homocysteine (Hcy) is converted to cysteine and reduced glutathione (GSH). Low protein intake can modulate the balance of this metabolic reaction. The aim of the present investigation was to study the effect of a low-protein diet on Hcy metabolism by monitoring levels of the amino acids involved in these pathways, and relating these levels to GSH levels and lipid peroxidation in rats. Methods: Sixteen rats were divided into 2 groups: control (C; standard AIN-93 diet, 20% protein) and low-protein diet (LPD; 8% protein diet). Rats in both groups were placed on the diets for 28 days. Results: A significant reduction (p < 0.05) in plasma Hcy concentration was found in LPD rats (0.16 +/- 0.04 mu mol/mg protein) versus C rats (0.25 +/- 0.03 mu mol/mg protein). Methionine levels were not significantly different between the 2 groups (C: 1.24 +/- 0.22 mu mol/mg protein; LPD: 1.03 +/- 0.27 mu mol/mg protein). A significant reduction (p ! 0.05) in hepatic GSH concentrations (C: 44 8 10 mu mol/mg protein; LPD: 17.4 +/- 4.3 mu mol/mg protein) was accompanied by an increase in lipid peroxidation (C: 0.13 +/- 0.01 mu mol/mg protein; LPD: 0.17 +/- 0.02 mu mol/mg protein; r = -0.62, p < 0.01). Conclusion: Hcy levels were reduced under a low-protein diet, resulting in modulated methyl balance and reduced GSH formation leading to increased susceptibility of hepatic cells to oxidative events. Copyright (C) 2009 S. Karger AG, Basel
Resumo:
The aim of the present study was to examine the effects of creatine supplementation on liver fat accumulation induced by a high-fat diet in rats. Rats were fed 1 of 3 different diets for 3 wk: a control liquid diet (C), a high-fat liquid diet (HF), or a high-fat liquid diet supplemented with creatine (HFC). The C and HF diets contained, respectively, 35 and 71% of energy derived from fat. Creatine supplementation involved the addition of 1% (wt:v) of creatine monohydrate to the liquid diet. The HF diet increased total liver fat concentration, liver TG, and liver TBARS and decreased the hepatic S-adenosylmethionine (SAM) concentration. Creatine supplementation normalized all of these perturbations. Creatine supplementation significantly decreased the renal activity of L-arginine:glycine amidinotransferase and plasma guanidinoacetate and prevented the decrease in hepatic SAM concentration in rats fed the HF diet. However, there was no change in either the phosphatidylcholine:phosphatidylethanolamine (PE) ratio or PE N-methyltransferase activity. The HF diet decreased mRNA for PPAR as well as 2 of its targets, carnitine palmitoyltransferase and long-chain acylCoA dehydrogenase. Creatine supplementation normalized these mRNA levels. In conclusion, creatine supplementation prevented the fatty liver induced by feeding rats a HF diet, probably by normalization of the expression of key genes of beta-oxidation. J. Nutr. 141: 1799-1804, 2011.
Resumo:
In vitro culture conditions affect both the maternal and embryonic expression of genes and is likely to alter both oocyte and embryo developmental competence. The search for better and less variable culture conditions simulating those in vivo has led to the development of defined culture media, with lower impact on the molecular reprogramming of oocytes and embryos. We evaluated embryo development and relative abundance (RA) of Hsp-70 and Bax transcripts in bovine blastocysts produced from oocytes matured in a chemically defined IVM system with synthetic polymers. Immature cumulus oocyte complexes (COCs) were matured for 22-24 h in alpha-MEM supplemented with IGF-1, insulin, 0.1% polyvinyl alcohol (PVA), or 0.1% polyvinylpyrrolidone (PVP), but without FSH or LH. The control group consisted of COCs matured it, TCM plus FSH and 10% estrous cow serum. After fertilization. presumptive zygotes were co-cultured with cumulus cells until 224 h post-insemination. Total RNA was isolated from embryo pools, reverse transcribed into cDNA, and subjected to transcript analysis by real-time PCR. Cleavage rate was higher (P < 0.05) for the control group (68.3%) than for the PVA (54.4%) and PVP-40 (58.3%) groups. Nevertheless. there was no difference among the PVA, PVP-40 and control groups in blastocyst or hatching rates. similarly, no difference in relative abundance of Hsp-70 and Bax transcripts was detected in comparison to the control group. We inferred that bovine oocytes can be matured in serum- and gonadotrophin-free medium supplemented with PVA or PVP, enriched with IGF-I and insulin, without altering post-cleavage development and relative abundance of some genes associated with stress and apoptosis. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Sulfite oxidase is a mitochondrial enzyme encoded by the SUOX gene and essential for the detoxification of sulfite which results mainly from the catabolism of sulfur-containing amino acids. Decreased activity of this enzyme can either be due to mutations in the SUOX gene or secondary to defects in the synthesis of its cofactor, the molybdenum cofactor. Defects in the synthesis of the molybdenum cofactor are caused by mutations in one of the genes MOCS1, MOCS2, MOCS3 and GEPH and result in combined deficiencies of the enzymes sulfite oxidase, xanthine dehydrogenase and aldehyde oxidase. Although present in many ethnic groups, isolated sulfite oxidase deficiency and molybdenum cofactor deficiency are rare inborn errors of metabolism, which makes awareness of key clinical and laboratory features of affected individuals crucial for early diagnosis. We report clinical, radiologic, biochemical and genetic data on a Brazilian and on a Turkish child with sulfite oxidase deficiency due to the isolated defect and impaired synthesis of the molybdenum cofactor, respectively. Both patients presented with early onset seizures and neurological deterioration. They showed no sulfite oxidase activity in fibroblasts and were homozygous for the mutations c.1136A>G in the SUOX gene and c.667insCGA in the MOCS1 gene, respectively. Widely available routine laboratory tests such as assessment of total homocysteine and uric acid are indicated in children with a clinical presentation resembling that of hypoxic ischemic encephalopathy and may help in obtaining a tentative diagnosis locally, which requires confirmation by specialized laboratories. (C) 2009 Published by Elsevier B.V.
Resumo:
An L-amino acid oxidase (BjarLAAO-I) from Bothrops jararaca snake venom was highly purified using a stepwise sequential chromatography on Sephadex G-75, Benzamidine Sepharose and Phenyl Sepharose. Purified BjarLAAO-I showed a molecular weight around 60,000 under reducing conditions and about 125,000 in the native form, when analysed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel filtration, respectively. BjarLAAO-I is a homodimeric acidic glycoprotein, pI similar to 5.0, and N-terminal sequence showing close structural homology with other snake venom LAAOs. The purified enzyme catalysed the oxidative deamination of L-amino acids, the most specific substrate being L-Phe. Five amino acids, L-Ser, L-Pro, L-Gly, L-Thr and L-Cys were not oxidized, clearly indicating a significant specificity. BjarLAAO-I significantly inhibited Ehrlich ascites tumour growth and induced an influx of polymorphonuclear cells, as well as spontaneous liberation of H(2)O(2) from peritoneal macrophages. Later, BjarLAAO-I induced mononuclear influx and peritoneal macrophage spreading. Animals treated with BjarLAAO-I showed higher survival time.