941 resultados para tissue engineering bone stem cells bioreactors finite element modeling Institute of Biomedical and Neural Engineering alginate collagen perfusion compression differentiation-inducing


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ability to predict the mechanical behavior of polymer composites is crucial for their design and manufacture. Extensive studies based on both macro- and micromechanical analyses are used to develop new insights into the behavior of composites. In this respect, finite element modeling has proved to be a particularly powerful tool. In this article, we present a Galerkin scheme in conjunction with the penalty method for elasticity analyses of different types of polymer composites. In this scheme, the application of Green's theorem to the model equation results in the appearance of interfacial flux terms along the boundary between the filler and polymer matrix. It is shown that for some types of composites these terms significantly affect the stress transfer between polymer and fillers. Thus, inclusion of these terms in the working equations of the scheme preserves the accuracy of the model predictions. The model is used to predict the most important bulk property of different types of composites. Composites filled with rigid or soft particles, and composites reinforced with short or continuous fibers are investigated. For each case, the results are compared with the available experimental results and data obtained from other models reported in the literature. Effects of assumptions made in the development of the model and the selection of the prescribed boundary conditions are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although trastuzumab (Herceptin) has substantially improved the overall survival of patients with mammary carcinomas, even initially well-responding tumors often become resistant. Because natural killer (NK) cell-mediated antibody-dependent cell-mediated cytotoxicity (ADCC) is thought to contribute to the therapeutic effects of trastuzumab, we have established a cell culture system to select for ADCC-resistant SK-OV-3 ovarian cancer and MCF7 mammary carcinoma cells. Ovarian cancer cells down-regulated HER2 expression, resulting in a more resistant phenotype. MCF7 breast cancer cells, however, failed to develop resistance in vitro. Instead, treatment with trastuzumab and polyclonal NK cells resulted in the preferential survival of individual sphere-forming cells that displayed a CD44(high)CD24(low) "cancer stem cell-like" phenotype and expressed significantly less HER2 compared with non-stem cells. Likewise, the CD44(high)CD24(low) population was also found to be more immunoresistant in SK-BR3, MDA-MB231, and BT474 breast cancer cell lines. When immunoselected MCF7 cells were then re-expanded, they mostly lost the observed phenotype to regenerate a tumor cell culture that displayed the initial HER2 surface expression and ADCC-susceptibility, but was enriched in CD44(high)CD24(low) cancer stem cells. This translated into increased clonogenicity in vitro and tumorigenicity in vivo. Thus, we provide evidence that the induction of ADCC by trastuzumab and NK cells may spare the actual tumor-initiating cells, which could explain clinical relapse and progress. Moreover, our observation that the "relapsed" in vitro cultures show practically identical HER2 surface expression and susceptibility toward ADCC suggests that the administration of trastuzumab beyond relapse might be considered, especially when combined with an immune-stimulatory treatment that targets the escape variants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Induced pluripotent stem cells (iPSC) have the capacity to self renew and differentiate into a myriad of cell types making them potential candidates for cell therapy and regenerative medicine. The goal of this thesis was to determine the characteristics of equine iPSC (eiPSC) that can be harnessed for potential use in veterinary regenerative medicine. Trauma to a horseâs limb often leads to the development of a chronic non-healing wound that lacks a keratinocyte cover, vital to healing. Thus, the overall hypothesis of this thesis was that eiPSC might offer a solution for providing wound coverage for such problematic wounds. Prior to considering eiPSC for clinical applications, their immunogenicity must be studied to ensure that the transplanted cells will be accepted and integrate into host tissues. The first objective of this thesis was to determine the immune response to eiPSC. To investigate the immunogenicity of eiPSC, the expression of major histocompatibility complex (MHC) molecules by the selected lines was determined, then the cells were used in an intradermal transplantation model developed for this study. While transplantation of allogeneic, undifferentiated eiPSC elicited a moderate cellular response in experimental horses, it did not cause acute rejection. This strategy enabled the selection of weakly immunogenic eiPSC lines for subsequent differentiation into lineages of therapeutic importance. Equine iPSC offer a potential solution to deficient epithelial coverage by providing a keratinocyte graft with the ability to differentiate into other accessory structures of the epidermis. The second objective of this thesis was to develop a protocol for the differentiation of eiPSC into a keratinocyte lineage. The protocol was shown to be highly efficient at inducing the anticipated phenotype within 30 days. Indeed, the eiPSC derived vi keratinocytes (eiPSC-KC) showed both morphologic and functional characteristics of primary equine keratinocytes (PEK). Moreover, the proliferative capacity of eiPSC-KC was superior while the migratory capacity, measured as the ability to epithelialize in vitro wounds, was comparable to that of PEK, suggesting exciting potential for grafting onto in vivo wound models. In conclusion, equine iPSC-derived keratinocytes exhibit features that are promising to the development of a stem cell-based skin construct with the potential to fully regenerate lost or damaged skin in horses. However, since eiPSC do not fully escape immune surveillance despite low MHC expression, strategies to improve engraftment of iPSC derivatives must be pursued.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A one-dimensional water column model using the Mellor and Yamada level 2.5 parameterization of vertical turbulent fluxes is presented. The model equations are discretized with a mixed finite element scheme. Details of the finite element discrete equations are given and adaptive mesh refinement strategies are presented. The refinement criterion is an "a posteriori" error estimator based on stratification, shear and distance to surface. The model performances are assessed by studying the stress driven penetration of a turbulent layer into a stratified fluid. This example illustrates the ability of the presented model to follow some internal structures of the flow and paves the way for truly generalized vertical coordinates. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neural differentiation of embryonic stem cells (ESCs) requires coordinated repression of the pluripotency regulatory program and reciprocal activation of the neurogenic regulatory program. Upon neural induction, ESCs rapidly repress expression of pluripotency genes followed by staged activation of neural progenitor and differentiated neuronal and glial genes. The transcriptional factors that underlie maintenance of pluripotency are partially characterized whereas those underlying neural induction are much less explored, and the factors that coordinate these two developmental programs are completely unknown. One transcription factor, REST (repressor element 1 silencing transcription factor), has been linked with terminal differentiation of neural progenitors and more recently, and controversially, with control of pluripotency. Here, we show that in the absence of REST, coordination of pluripotency and neural induction is lost and there is a resultant delay in repression of pluripotency genes and a precocious activation of both neural progenitor and differentiated neuronal and glial genes. Furthermore, we show that REST is not required for production of radial glia-like progenitors but is required for their subsequent maintenance and differentiation into neurons, oligodendrocytes, and astrocytes. We propose that REST acts as a regulatory hub that coordinates timely repression of pluripotency with neural induction and neural differentiation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Limbal epithelial stem cells may ameliorate limbal stem cell deficiency through secretion of therapeutic proteins, delivered to the cornea in a controlled manner using hydrogels. In the present study the secretome of alginate-encapsulated limbal epithelial stem cells is investigated. Conditioned medium was generated from limbal epithelial stem cells encapsulated in 1.2% (w/v) calcium alginate gels. Conditioned medium proteins separated by 1-D gel electrophoresis were visualized by silver staining. Proteins of interest including secreted protein acidic and rich in cysteine, profilin-1, and galectin-1 were identified by immunoblotting. The effect of conditioned medium (from alginate-encapsulated limbal epithelial stem cells) on corneal epithelial cell proliferation was quantified and shown to significantly inhibit (P</=0.05) their growth. As secreted protein acidic and rich in cysteine was previously reported to attenuate proliferation of epithelial cells, this protein may be responsible, at least in part, for inhibition of corneal epithelial cell proliferation. We conclude that limbal epithelial stem cells encapsulated in alginate gels may regulate corneal epithelialisation through secretion of inhibitory proteins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neural stem cells are precursors of neurons and glial cells. During brain development, these cells proliferate, migrate and differentiate into specific lineages. Recently neural stem cells within the adult central nervous system were identified. Informations are now emerging about regulation of stem cell proliferation, migration and differentiation by numerous soluble factors such as chemokines and cytokines. However, the signal transduction mechanisms downstream of these factors are less clear. Here, we review potential evidences for a novel central role of the transcription factor nuclear factor kappa B (NF-kappaB) in these crucial signal transduction processes. NF-kappaB is an inducible transcription factor detected in neurons, glia and neural stem cells. NF-kappaB was discovered by David Baltimore's laboratory as a transcription factor in lymphocytes. NF-kappaB is involved in many biological processes such as inflammation and innate immunity, development, apoptosis and anti-apoptosis. It has been recently shown that members of the NF-kappaB family are widely expressed by neurons, glia and neural stem cells. In the nervous system, NF-kappaB plays a crucial role in neuronal plasticity, learning, memory consolidation, neuroprotection and neurodegeneration. Recent data suggest an important role of NF-kappaB on proliferation, migration and differentiation of neural stem cells. NF-kappaB is composed of three subunits: two DNA-binding and one inhibitory subunit. Activation of NF-kappaB takes place in the cytoplasm and results in degradation of the inhibitory subunit, thus enabling the nuclear import of the DNA-binding subunits. Within the nucleus, several target genes could be activated. In this review, we suggest a model explaining the multiple action of NF-kappaB on neural stem cells. Furthermore, we discuss the potential role of NF-kappaB within the so-called brain cancer stem cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: The non-homogenous aspect of periodontal ligament (PDL) has been examined using finite element analysis (FEA) to better simulate PDL behavior. The aim of this study was to assess, by 2-D FEA, the influence of non-homogenous PDL on the stress distribution when the free-end saddle removable partial denture (RPD) is partially supported by an osseointegrated implant. Material and Methods: Six finite element (FE) models of a partially edentulous mandible were created to represent two types of PDL (non-homogenous and homogenous) and two types of RPD (conventional RPD, supported by tooth and fibromucosa; and modified RPD, supported by tooth and implant [10.00x3.75 mm]). Two additional FE models without RPD were used as control models. The non-homogenous PDL was modeled using beam elements to simulate the crest, horizontal, oblique and apical fibers. The load (50 N) was applied in each cusp simultaneously. Regarding boundary conditions the border of alveolar ridge was fixed along the x axis. The FE software (Ansys 10.0) was used to compute the stress fields, and the von Mises stress criterion (sigma vM) was applied to analyze the results. Results: The peak of sigma vM in non-homogenous PDL was higher than that for the homogenous condition. The benefits of implants were enhanced for the non-homogenous PDL condition, with drastic sigma vM reduction on the posterior half of the alveolar ridge. The implant did not reduce the stress on the support tooth for both PDL conditions. Conclusion: The PDL modeled in the non-homogeneous form increased the benefits of the osseointegrated implant in comparison with the homogeneous condition. Using the non-homogenous PDL, the presence of osseointegrated implant did not reduce the stress on the supporting tooth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A procedure to model optical diffused-channel waveguides is presented in this work. The dielectric waveguides present anisotropic refractive indexes which are calculated from the proton concentration. The proton concentration inside the channel is calculated by the anisotropic 2D-linear diffusion equation and converted to the refractive indexes using mathematical relations obtained from experimental data, the arbitrary refractive index profile is modeled by a. nodal expansion in the base functions. The TE and TM-like propagation properties (effective index) and the electromagnetic fields for well-annealed proton-exchanged (APE) LiNbO3 waveguides are computed by the finite element method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A MATHEMATICA notebook to compute the elements of the matrices which arise in the solution of the Helmholtz equation by the finite element method (nodal approximation) for tetrahedral elements of any approximation order is presented. The results of the notebook enable a fast computational implementation of finite element codes for high order simplex 3D elements reducing the overheads due to implementation and test of the complex mathematical expressions obtained from the analytical integrations. These matrices can be used in a large number of applications related to physical phenomena described by the Poisson, Laplace and Schrodinger equations with anisotropic physical properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives: The objective of the present study was to evaluate a prefabricated intraradicular threaded pure titanium post, designed and developed at the Sao Jose dos Campos School of Dentistry - UNESP, Brazil. This new post was designed to minimize stresses observed with prefabricated post systems and to improve cost-benefits. Materials and and methods: Fracture resistance testing of the post/core/root complex, fracture analysis by microscopy and stress analysis by the finite element method were used for post evaluation. The following four prefabricated metal post systems were analyzed: group 1, experimental post; group 2, modification of the experimental post; group 3, Flexi Post, and group 4, Para Post. For the analysis of fracture resistance, 40 bovine teeth were randomly assigned to the four groups (n=10) and used for the fabrication of test specimens simulating the situation in the mouth. The test specimens were subjected to compressive strength testing until fracture in an EMIC universal testing machine. After fracture of the test specimens, their roots were sectioned and analyzed by microscopy. For the finite element method, specimens of the fracture resistance test were simulated by computer modeling to determine the stress distribution pattern in the post systems studied. Results: The fracture test presented the following averages and standard deviation: G1 (45.63 +/- 8.77), G2 (49.98 +/- 7.08), G3 (43.84 +/- 5.52), G4 (47.61 +/- 7.23). Stress was homogenously distributed along the body of the intraradicular post in group 1, whereas high stress concentrations in certain regions were observed in the other groups. These stress concentrations in the body of the post induced the same stress concentration in root dentin. Conclusions: The experimental post (original and modified versions) presented similar fracture resistance and better results in the stress analysis when compared with the commercial post systems tested (08/2008PA/CEP).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a finite element numerical solution of free convection in a cavity with side walls maintained at constant but different temperatures. The predictions from the model and the method of solution were validated by comparison with the 'bench mark' solution and Vahl Davis' results and good agreement was found. The present model was used to obtain additional results over a wide range of Rayleigh number (10(3)-10(6)) and L/H ratios varying from 0.1 to 1.0. The predicted stream function patterns, temperature and velocity profiles as well as the mean Nusselt number were presented and discussed. (C) 2000 Elsevier B.V. Ltd. All rights reserved.