915 resultados para testicular germ cell tumors
Resumo:
INTRODUCTION: Performance status (PS) 2 patients with non-small cell lung cancer (NSCLC) experience more toxicity, lower response rates, and shorter survival times than healthier patients treated with standard chemotherapy. Paclitaxel poliglumex (PPX), a macromolecule drug conjugate of paclitaxel and polyglutamic acid, reduces systemic exposure to peak concentrations of free paclitaxel and may lead to increased concentrations in tumors due to enhanced vascular permeability. METHODS: Chemotherapy-naive PS 2 patients with advanced NSCLC were randomized to receive carboplatin (area under the curve = 6) and either PPX (210 mg/m/10 min without routine steroid premedication) or paclitaxel (225 mg/m/3 h with standard premedication) every 3 weeks. The primary end point was overall survival. RESULTS: A total of 400 patients were enrolled. Alopecia, arthralgias/myalgias, and cardiac events were significantly less frequent with PPX/carboplatin, whereas grade ≥3 neutropenia and grade 3 neuropathy showed a trend of worsening. There was no significant difference in the incidence of hypersensitivity reactions despite the absence of routine premedication in the PPX arm. Overall survival was similar between treatment arms (hazard ratio, 0.97; log rank p = 0.769). Median and 1-year survival rates were 7.9 months and 31%, for PPX versus 8 months and 31% for paclitaxel. Disease control rates were 64% and 69% for PPX and paclitaxel, respectively. Time to progression was similar: 3.9 months for PPX/carboplatin versus 4.6 months for paclitaxel/carboplatin (p = 0.210). CONCLUSION: PPX/carboplatin failed to provide superior survival compared with paclitaxel/carboplatin in the first-line treatment of PS 2 patients with NSCLC, but the results with respect to progression-free survival and overall survival were comparable and the PPX regimen was more convenient. © 2008International Association for the Study of Lung Cancer.
Resumo:
Extrapulmonary small cell and small cell neuroendocrine tumors of unknown primary site are, in general, aggressive neoplasms with a short median survival. Like small cell lung cancer (SCLC), they often are responsive to chemotherapy and radiotherapy. Small cell lung cancer and well differentiated neuroendocrine carcinomas of the gastrointestinal tract and pancreas tend to express somatostatin receptors. These tumors may be localized in patients by scintigraphic imaging using radiolabeled somatostatin analogues. A patient with an anaplastic neuroendocrine small cell tumor arising on a background of multiple endocrine neoplasia type 1 syndrome is reported. The patient had a known large pancreatic gastrinoma and previously treated parathyroid adenopathy. At presentation, there was small cell cancer throughout the liver and skeleton. Imaging with a radiolabeled somatostatin analogue, 111In- pentetreotide (Mallinckrodt Medical B. V., Petten, Holland), revealed all sites of disease detected by routine biochemical and radiologic methods. After six cycles of chemotherapy with doxorubicin, cyclophosphamide, and etoposide, there was almost complete clearance of the metastatic disease. 111In-pentetreotide scintigraphy revealed uptake consistent with small areas of residual disease in the liver, the abdomen (in mesenteric lymph nodes), and posterior thorax (in a rib). The primary gastrinoma present before the onset of the anaplastic small cell cancer showed no evidence of response to the treatment. The patient remained well for 1 year and then relapsed with brain, lung, liver, and skeletal metastases. Despite an initial response to salvage radiotherapy and chemotherapy with carboplatin and dacarbazine, the patient died 6 months later.
Resumo:
Akt, a Serine/Threonine protein kinase, mediates growth factor-associated cell survival. Constitutive activation of Akt (phosphorylated Akt, P-Akt) has been observed in several human cancers, including lung cancer and may be associated with poor prognosis and chemotherapy and radiotherapy resistance. The clinical relevance of P-Akt in non-small cell lung cancer (NSCLC) is not well described. In the present study, we examined 82 surgically resected snap-frozen and paraffin-embedded stage I to IIIA NSCLC samples for P-Akt and Akt by Western blotting and for P-Akt by immunohistochemistry. P-Akt protein levels above the median, measured using reproducible semiquantitative band densitometry, correlated with a favorable outcome (P = 0.007). Multivariate analysis identified P-Akt as a significant independent favorable prognostic factor (P = 0.004). Although associated with a favorable prognosis, high P-Akt levels correlated with high tumor grade (P = 0.02). Adenocarcinomas were associated with low P-Akt levels (P = 0.039). Akt was not associated with either outcome or clinicopathologic variables. Cytoplasmic (CP-Akt) and nuclear (NP-Akt) P-Akt tumor cell staining was detected in 96% and 42% of cases, respectively. Both CP-Akt and NP-Akt correlated with well-differentiated tumors (P = 0.008 and 0.017, respectively). NP-Akt also correlated with nodal metastases (P = 0.022) and squamous histology (P = 0.037). These results suggest P-Akt expression is a favorable prognostic factor in NSCLC. Immunolocalization of P-Akt, however, may be relevant as NP-Akt was associated with nodal metastases, a known poor prognostic feature in this disease. P-Akt may be a potential novel therapeutic target for the management of NSCLC. © 2005 American Association for Cancer Research.
Resumo:
Purpose To evaluate carbonic anhydrase (CA) IX as a surrogate marker of hypoxia and investigate the prognostic significance of different patterns of expression in non-small-cell lung cancer (NSCLC). Methods Standard immunohistochemical techniques were used to study CA IX expression in 175 resected NSCLC tumors. CA IX expression was determined by Western blotting in A549 cell lines grown under normoxic and hypoxic conditions. Measurements from microvessels to CA IX positivity were obtained. Results CA IX immunostaining was detected in 81.8% of patients. Membranous (m) (P = .005), cytoplasmic (c) (P = .018), and stromal (P < .001) CA IX expression correlated with the extent of tumor necrosis (TN). The mean distance from vascular endothelium to the start of tumor cell positivity was 90 μm, which equates to an oxygen pressure of 5.77 mmHg. The distance to blood vessels from individual tumor cells or tumor cell clusters was greater if they expressed mCA IX than if they did not (P < .001). Hypoxic exposure of A549 cells for 16 hours enhanced CAIX expression in the nuclear and cytosolic extracts. Perinuclear (p) CA IX (P = .035) was associated with a poor prognosis. In multivariate analysis, pCA IX (P = .004), stage (P = .001), platelet count (P = .011), sex (P = .027), and TN (P = .035) were independent poor prognostic factors. Conclusion These results add weight to the contention that mCA IX is a marker of tumor cell hypoxia. The absence of CA IX staining close to microvessels suggests that these vessels are functionally active. pCA IX expression is representative of an aggressive phenotype. © 2003 by American Society of Clinical Oncology.
Resumo:
Tumor hypoxia has been recognized to confer resistance to anticancer therapy since the early 20th century. More recently, its fundamental role in tumorigenesis has been established. Hypoxia-inducible factor (HIF)-1 has been identified as an important transcription factor that mediates the cellular response to hypoxia, promoting both cellular survival and apoptosis under different conditions. Increased tumor cell expression of this transcription factor promotes tumor growth In vivo and is associated with a worse prognosis in patients with non-small-cell lung cancer (NSCLC) undergoing tumor resection. The epidermal growth factor receptor (EGFR) promotes tumor cell proliferation and anglogenesis and inhibits apoptosis. Epidermal growth factor receptor expression increases in a stepwise manner during tumorigenesis and is overexpressed in > 50% of NSCLC tumors. This review discusses the reciprocal relationship between tumor cell hypoxia and EGFR. Recent studies suggest that hypoxia induces expression of EGFR and its ligands. In return, EGFR might enhance the cellular response to hypoxia by increasing expression of HIF-1α, and so act as a survival factor for hypoxic cancer cells. Immunohistochemical studies on a series of resected NSCLC tumors add weight to this contention by demonstrating a close association between expression of EGFR, HIF-1α, and:1 of HIF-1's target proteins, carbonic anhydrase IX. In this article we discuss emerging treatment strategies for NSCLC that target HIF-1, HIF-1 transcriptional targets, and EGFR.
Resumo:
Background Thromboxane synthase (TXS) metabolizes prostaglandin H2 into thromboxanes, which are biologically active on cancer cells. TXS over-expression has been reported in a range of cancers, and associated with angiogenesis and poor outcome. TXS has been identified as a potential therapeutic target in NSCLC. This study examines a link between TXS expression, angiogenesis, and survival in NSCLC. Methods TXS and VEGF metabolite levels were measured in NSCLC serum samples (n=46) by EIA. TXB2 levels were correlated with VEGF. A 204-patient TMA was stained for TXS, VEGF, and CD-31 expression. Expression was correlated with a range of clinical parameters, including overall survival. TXS expression was correlated with VEGF and CD-31. Stable TXS clones were generated and the effect of overexpression on tumor growth and angiogenesis markers was examined in-vitro and in-vivo (xenograft mouse model). Results Serum TXB2 levels were correlated with VEGF (p<0.05). TXS and VEGF were expressed to a varying degree in NSCLC tissue. TXS was associated with VEGF (p<0.0001) and microvessel density (CD-31; p<0.05). TXS and VEGF expression levels were higher in adenocarcinoma (p<0.0001) and female patients (p<0.05). Stable overexpression of TXS increased VEGF secretion in-vitro. While no significant association with patient survival was observed for either TXS or VEGF in our patient cohort, TXS overexpression significantly (p<0.05) increased tumor growth in-vivo. TXS overexpression was also associated with higher levels of VEGF, microvessel density, and reduced apoptosis in xenograft tumors. Conclusion TXS promotes tumor growth in-vivo in NSCLC, an effect which is at least partly mediated through increased tumor angiogenesis.
Resumo:
Background Recent experimental and biomarker evidence indicates that the epidermal growth factor receptor (EGFR) and insulin-like growth factor receptor 1 (IGF1R) interact in the pathogenesis of malignant epithelial tumors, including lung cancer. This study examines the expression of both receptors and their prognostic significance in surgically resected non-small-cell lung cancer (NSCLC). Methods EGFR and IGF1R expression were evaluated in 184 patients with NSCLC (83 squamous cell carcinomas [SCCs], 83 adenocarcinomas [ADCs], and 18 other types) using immunohistochemical (IHC) analysis. Expression of both receptors was examined in matched fresh frozen normal and tumor tissues from 40 patients with NSCLC (20 SCCs and 20 ADCs) by Western blot analysis. Results High EGFR expression was detected in 51% of patients, and SCCs had higher EGFR expression than did non-SCCs (57.4% vs. 42.5%; P =.028). High IGF1R expression was observed in 53.8% of patients, with SCC having higher expression than non-SCC (62.6% vs. 37.3%; P =.0004). A significant association was shown between EGFR and IGF1R protein overexpression (P <.005). Patients with high expression of both receptors had a poorer overall survival (OS) (P =.04). Higher EGFR and IGF1R expression was detected in resected tumors relative to matched normal tissues (P =.0004 and P =.0009), with SCC having higher expression levels than ADC. Conclusion Our findings indicate a close interrelationship between EGFR and IGF1R. Coexpression of both receptors correlates with poor survival. This subset of patients may benefit from treatments cotargeting EGFR and IGF1R. © 2014 Elsevier Inc. All rights reserved.
Resumo:
Ghrelin is a 28-amino acid peptide hormone produced predominantly in the stomach but also in a range of normal cell types and tumors, where it has endocrine, paracrine, and autocrine roles. Previously, we have demonstrated that ghrelin has proliferative and antiapoptotic effects in endometrial cancer cell lines, suggesting a potential role in promoting tumor growth. In the present study, we investigated the effect of ghrelin receptor, GHSR, and gene silencing in vitro and in vivo and characterized ghrelin and GHSR1a protein expression in human endometrial tumors. GHSR gene silencing was achieved in the Ishikawa and KLE endometrial cancer cell lines, using a lentiviral short-hairpin RNA targeting GHSR. The effects of GHSR1a knockdown were further analyzed in vivo using the Ishikawa cell line in a NOD/SCID xenograft model. Cell proliferation was reduced in cultured GHSR1a knockdown Ishikawa and KLE cells compared with scrambled controls in the absence of exogenously applied ghrelin and in response to exogenous ghrelin (1,000 nM). The tumor volumes were reduced significantly in GHSR1a knockdown Ishikawa mouse xenograft tumors compared with scrambled control tumours. Using immunohistochemistry, we demonstrated that ghrelin and GHSR1a are expressed in benign and cancerous glands in human endometrial tissue specimens, although there was no correlation between the intensity of staining and cancer grade. These data indicate that downregulation of GHSR expression significantly inhibits endometrial cancer cell line and mouse xenograft tumour growth. This is the first preclinical evidence that downregulation of GHSR may be therapeutic in endometrial cancer.
Resumo:
Over 80% of women diagnosed with advanced-stage ovarian cancer die as a result of disease recurrence due to failure of chemotherapy treatment. In this study, using two distinct ovarian cancer cell lines (epithelial OVCA 433 and mesenchymal HEY) we demonstrate enrichment in a population of cells with high expression of CSC markers at the protein and mRNA levels in response to cisplatin, paclitaxel and the combination of both. We also demonstrate a significant enhancement in the sphere forming abilities of ovarian cancer cells in response to chemotherapy drugs. The results of these in vitro findings are supported by in vivo mouse xenograft models in which intraperitoneal transplantation of cisplatin or paclitaxel-treated residual HEY cells generated significantly higher tumor burden compared to control untreated cells. Both the treated and untreated cells infiltrated the organs of the abdominal cavity. In addition, immunohistochemical studies on mouse tumors injected with cisplatin or paclitaxel treated residual cells displayed higher staining for the proliferative antigen Ki67, oncogeneic CA125, epithelial E-cadherin as well as cancer stem cell markers such as Oct4 and CD117, compared to mice injected with control untreated cells. These results suggest that a short-term single treatment of chemotherapy leaves residual cells that are enriched in CSC-like traits, resulting in an increased metastatic potential. The novel findings in this study are important in understanding the early molecular mechanisms by which chemoresistance and subsequent relapse may be triggered after the first line of chemotherapy treatment.
Resumo:
We have investigated the role of bone sialoprotein (BSP), a secreted glycoprotein normally found in bone, in breast cancer progression. To explore functions for BSP in human breast cancer invasion and metastasis, the full-length BSP cDNA was transfected into the MDA-MB-231-BAG human breast cancer cell line under the control of the CMV promoter. Clones expressing BSP and vector control clones were isolated. BSP producing clones showed increased monolayer wound healing, a faster rate of stellate outgrowth in Matrigel and increased rate of invasion into a collagen matrix when compared to control clones. Clones were also examined in models of breast cancer growth and metastasis in vivo. BSP transfected clones showed an increased rate of primary tumor growth following mammary fat pad injection of nude mice. BSP transfected clones and vector control clones metastasized to soft organs and bone at a similar rate after intra-cardiac injection as determined by real-time PCR and X-ray analysis. Although these organs were targets for both BSP transfected and non-transfected cells, the size of the metastatic lesion was shown to be significantly larger for BSP expressing clones. This was determined by real-time PCR analysis for soft organs and by X-ray analysis of bone lesions. For bone this was confirmed by intra-tibial injections of cells in nude mice. We conclude that BSP acts to drive primary and secondary tumor growth of breast cancers in vivo.
Resumo:
Hepatocyte growth factor/scatter factor (HGF/SF) is a protein growth factor whose pleiotropic effects on epithelial cells include the stimulation of motility, mitosis and tubulogenesis. These responses are mediated by the cell surface tyrosine kinase receptor c-met. Because both the cytokine and receptor are found in the gastrointestinal tract, we have studied the effects of HGF/SF on transformed gut epithelial cells which express c-met. Here we describe the response of a new transformed human jejunal epithelioid cell line (HIE-7) to HGF/SF. Morphologically HIE-7 cells are immature. Their epithelial lineage was confirmed by reactivity with the epithelial specific antibodies AE1/AE3, Cam 5.2, Ber-EP4 and anti-EMA and is consistent with their expression of c-met mRNA and protein. In addition, electron microscopic analysis revealed the presence of primitive junctions and rudimentary microvilli, but features of polarization were absent. When grown on reconstituted basement membranes, HIE-7 cells formed closely associated multicellular cord-like structures adjacent to acellular spaces. However, the cells did not mature structurally, form lumen-like structures or express disaccharidase mRNA, even in the presence of recombinant HGF (rHGF). On the other hand, rHGF induced HIE-7 cells to scatter and stimulated their rapid migration in a modified wound assay. To determine whether the motogenic effect caused by rHGF is associated with HIE-7 cell invasiveness across reconstituted basement membranes, a Boyden chamber chemoinvasion assay was performed. rHGF stimulated a 10-fold increase in the number of HIE-7 cells that crossed the basement membrane barrier, while only stimulating a small increase in chemotaxis across a collagen IV matrix, suggesting that the cytokine activates matrix penetration by these cells. rHGF also stimulated the invasion of basement membranes by an undifferentiated rat intestinal cell line (IEC-6) and by two human colon cancer cell lines which are poorly differentiated (DLD-1 and SW 948). In contrast, two moderately well differentiated colon cancer cell lines (Caco-2 and HT-29) did not manifest an invasive response when exposed to rHGF. These results suggest that HGF/SF may play a significant role in the invasive behavior of anaplastic and poorly differentiated gut epithelial tumors.
Resumo:
Tumor cells in ascites are a major source of disease recurrence in ovarian cancer patients. In an attempt to identify and profile the population of ascites cells obtained from ovarian cancer patients, a novel method was developed to separate adherent (AD) and non-adherent (NAD) cells in culture. Twenty-five patients were recruited to this study; 11 chemonaive (CN) and 14 chemoresistant (CR). AD cells from both CN and CR patients exhibited mesenchymal morphology with an antigen profile of mesenchymal stem cells and fibroblasts. Conversely, NAD cells had an epithelial morphology with enhanced expression of cancer antigen 125 (CA125), epithelial cell adhesion molecule (EpCAM) and cytokeratin 7. NAD cells developed infiltrating tumors and ascites within 12-14 weeks after intraperitoneal (i.p.) injections into nude mice, whereas AD cells remained non-tumorigenic for up to 20 weeks. Subsequent comparison of selective epithelial, mesenchymal and cancer stem cell (CSC) markers between AD and NAD populations of CN and CR patients demonstrated an enhanced trend in mRNA expression of E-cadherin, EpCAM, STAT3 and Oct4 in the NAD population of CR patients. A similar trend of enhanced mRNA expression of CD44, MMP9 and Oct4 was observed in the AD population of CR patients. Hence, using a novel purification method we demonstrate for the first time a distinct separation of ascites cells into epithelial tumorigenic and mesenchymal non-tumorigenic populations. We also demonstrate that cells from the ascites of CR patients are predominantly epithelial and show a trend towards increased mRNA expression of genes associated with CSCs, compared to cells isolated from the ascites of CN patients. As the tumor cells in the ascites of ovarian cancer patients play a dominant role in disease recurrence, a thorough understanding of the biology of the ascites microenvironment from CR and CN patients is essential for effective therapeutic interventions.
Resumo:
Laminin has been shown to promote the malignant phenotype and the expression of certain laminin receptors has been correlated with the malignant character of the tumors. Here new cell lines were isolated from a human colon cancer cell line (LCC-C1) based on their adhesiveness to laminin. The laminin-adherent subclone formed large tumors in nude mice, whereas the laminin-nonadherent subclone failed to form sizable tumors. Only the laminin-adherent subclone adhered to laminin and invaded through Matrigel-coated filters. The adhesive and invasive ability of the cells was almost completely blocked by low concentrations (1.0 μg/ml) of anti-β1 integrin antibody. The amounts of total cellular β1 integrin protein were similar in the two subclones when compared by Western blot, and the mRNA levels also did not differ. The localization of β1 integrin laminin receptor varied in the two subclones; the laminin-adherent subclone showed a linear distribution along the cell-cell junctions, while the laminin-nonadherent subclone did not stain between the cells. Using laminin-Sepharose affinity chromatography, more β1 integrin was obtained from the laminin-adherent subclone. These findings suggest that alterations in the affinity of β1 integrin for laminin and in its membrane distribution might be involved in the increased tumorigenicity observed in colon cancer cells.
Resumo:
Metabolic cooperation mediated by secreted factors between Sertoli cells and peritubular myoid cells has been well documented. We have confirmed that factors secreted by peritubular myoid cells modulate androgen-binding protein (ABP) secretion by Sertoli cells and shown further that this can also be achieved with peritubular myoid cell extracellular matrix (ECM). While peritubular myoid cell ECM potentiated the stimulatory effect of dibutyryl cyclic AMP on Sertoli cell ABP secretion, secreted factors did not, suggesting that the two components influence Sertoli cells through distinct mechanisms. We also tested other factors and other cell lines for effects on ABP production by Sertoli cells. The addition of human plasma fibronectin or conditioned medium from the basement membrane-producing Englebreth-Holm- Swarm sarcoma also stimulated ABP secretion by Sertoli cells. Cocultures of epithelial Sertoli cells with the cells of mesenchymal origin, such as testicular peritubular myoid cells, embryonic skin fibroblasts, and bladder smooth muscle cells, significantly stimulated ABP secretion by Sertoli cells, but co-culture with the epithelial-derived Martin-Darby canine kidney cell line had no effect on Sertoli cell-secreted ABP levels. Our data further define the epithelial-mesenchymal cell interaction that exists between Sertoli cells and peritubular myoid cells in the mammalian testis.
Resumo:
The incorporation of 3H-proline into protein was regarded as a measure of total protein synthesis and the incorporation into hydroxyproline as indicative of collagen synthesis. Relative collagen synthesis (expressed as percent of total protein synthesized) by Sertoli and peritubular myoid cells cultured from 20-22 day old rat testis was estimated. In both secreted and cellular pools, relative collagen synthesis by Sertoli cells was significantly greater than by peritubular myoid cells. Coculture of Sertoli and myoid cells resulted in a significant increase in relative collagen synthesis when compared to monocultures of each cell type. Addition of serum to peritubular myoid cells resulted in a stronger stimulation of relative collagen production. Sertoli cell extracellular matrix inhibited relative collagen synthesis by peritubular myoid cells in the presence or absence of serum. Radioactivity into hydroxyproline as corrected per cellular DNA also showed similar results. Immunolocalization studies confirmed that both cell types synthesize type I and type IV collagens. These results indicate that stimulation of collagen synthesis observed in Sertoli-myoid cell cocultures is due to humoral interactions, rather than extracellular matrix, and Sertoli cell extracellular matrix regulates serum-induced increase in collagen synthesis by peritubular myoid cells.