964 resultados para temporal variation
Resumo:
BACKGROUND Rising levels of overweight and obesity are important public-health concerns worldwide. The purpose of this study is to elucidate their prevalence and trends in Switzerland by analyzing variations in Body Mass Index (BMI) of Swiss conscripts. METHODS The conscription records were provided by the Swiss Army. This study focussed on conscripts 18.5-20.5 years of age from the seven one-year birth cohorts spanning the period 1986-1992. BMI across professional status, area-based socioeconomic position (abSEP), urbanicity and regions was analyzed. Two piecewise quantile regression models with linear splines for three birth-cohort groups were used to examine the association of median BMI with explanatory variables and to determine the extent to which BMI has varied over time. RESULTS The study population consisted of 188,537 individuals. Median BMI was 22.51 kg/m2 (22.45-22.57 95% confidence interval (CI)). BMI was lower among conscripts of high professional status (-0.46 kg/m2; 95% CI: -0.50, -0.42, compared with low), living in areas of high abSEP (-0.11 kg/m2; 95% CI: -0.16, -0.07 compared to medium) and from urban communities (-0.07 kg/m2; 95% CI: -0.11, -0.03, compared with peri-urban). Comparing with Midland, median BMI was highest in the North-West (0.25 kg/m2; 95% CI: 0.19-0.30) and Central regions (0.11 kg/m2; 95% CI: 0.05-0.16) and lowest in the East (-0.19 kg/m2; 95% CI: -0.24, -0.14) and Lake Geneva regions (-0.15 kg/m2; 95% CI: -0.20, -0.09). Trajectories of regional BMI growth varied across birth cohorts, with median BMI remaining high in the Central and North-West regions, whereas stabilization and in some cases a decline were observed elsewhere. CONCLUSIONS BMI of Swiss conscripts is associated with individual and abSEP and urbanicity. Results show regional variation in the levels and temporal trajectories of BMI growth and signal their possible slowdown among recent birth cohorts.
Resumo:
A significant focus of hydrothermal vent ecological studies has been to understand how species cope with various stressors through physiological tolerance and biochemical resistance. Yet, the environmental conditions experienced by vent species have not been well characterized. This objective requires continuous observations over time intervals that can capture environmental variability at scales that are relevant to animals. We used autonomous temperature logger arrays (four roughly parallel linear arrays of 12 loggers spaced every 10–12 cm) to study spatial and temporal variations in the thermal regime experienced by hydrothermal vent macrofauna at a diffuse flow vent. Hourly temperatures were recorded over eight months from 2010 to 2011 at Grotto vent in the Main Endeavour vent field on the Juan de Fuca Ridge, a focus area of the Ocean Networks Canada cabled observatory. The conspicuous animal assemblages in video footage contained Ridgeia piscesae tubeworms, gastropods (primarily Lepetodrilus fucensis), and polychaetes (polynoid scaleworms and the palm worm Paralvinella palmiformis). Two dimensional spatial gradients in temperature were generally stable over the deployment period. The average temperature recorded by all arrays, and in some individual loggers, revealed distinctive fluctuations in temperature that often corresponded with the tidal cycle. We postulate that this may be related to changes in bottom currents or fluctuations in vent discharge. A marked transient temperature increase lasting over a period of days was observed in April 2011. While the distributions and behavior of Juan de Fuca Ridge vent invertebrates may be partially constrained by environmental temperature and temperature tolerance, except for the one transient high-temperature event, observed fluid temperatures were generally similar to the thermal preferences for some species, and typically well below lethal temperatures for all species. Average temperatures of the four arrays ranged from 4.1 to 11.0 °C during the deployment, indicating that on an hourly timescale the temperature conditions in this tubeworm community were fairly moderate and stable. The generality of these findings and behavioural responses of vent organisms to predictable rhythmicity and non-periodic temperature shifts are areas for further investigation
Resumo:
The results obtained in the August and December 2003, August 2004 and January 2005 oceanographic campaigns in the northern region of the Todos os Santos Bay (lat. 12º44.5'S; long. 038º35.00'W) between the Madre de Deus and Maré islands are analyzed. Instruments of continuous and discrete samplings were used to measure hydrographic properties currents and tides. The water mass of the northern region of the bay is forced by semidiurnal and mesotides of form number 0.08 and the lunar component M2 height was estimated at 91cm. The time series of the surface currents indicated movements in the N/S direction, forced by the tide with maximum magnitudes of 0.73 m.s-1 on the December 2003 campaign. However, in August 2004 the currents were dominated by the wind stress forcing, with a maximum speed of 1.85 m.s-1 and SE direction. Near the bottom, the influence of the tide is not as evident, with a decrease in intensity due to internal and bottom friction, with a maximum velocity of 0.17 m.s-1. The thermal and haline structures were weakly horizontally, as well as vertically stratified, with extreme values varying in the intervals 23ºC (August, 2004) to 28ºC (December, 2003) and 31.0 psu (August, 2003) to 36.0 psu (December, 2003), respectively. Some conclusions may be drawn from these results: i) The signs of the dilution of the fresh water discharges of the Caípe, Mataripe and São Paulo rivers in the region under the influence of the RLAM were observed only during the winter periods, but in the summer the region was flooded by waters of oceanic origin and the salinities above 36.0 indicated TW mass intrusion; ii) The N-S circulation near the RLAM is strongly dominated by the tide, and the importance of the M2 component was unequivocal, however, the E-W component presented some tidal modulation away from abrupt bottom topographical changes, and iii) The residual series, calculated as the difference between the original and modeled, is about ¼ of the original and confirmed its semidiurnal character.
Resumo:
The brief interaction of precipitation with a forest canopy can create a high spatial variability of both throughfall and solute deposition. We hypothesized that (i) the variability in natural forest systems is high but depends on system-inherent stability, (ii) the spatial variability of solute deposition shows seasonal dynamics depending on the increase in rainfall frequency, and (iii) spatial patterns persist only in the short-term. The study area in the north-western Brazilian state of Rondonia is subject to a climate with a distinct wet and dry season. We collected rain and throughfall on an event basis during the early wet season (n = 14) and peak of the wet season (n = 14) and analyzed the samples for pH and concentrations of NH4+, Na+, K+, Ca2+ Mg2+,, Cl-, NO3-, SO42- and DOC. The coefficient 3 4 cient of variation for throughfall based on both sampling intervals was 29%, which is at the lower end of values reported from other tropical forest sites, but which is higher than in most temperate forests. Coefficients of variation of solute deposition ranged from 29% to 52%. This heterogeneity of solute deposition is neither particularly high nor particularly tow compared with a range of tropical and temperate forest ecosystems. We observed an increase in solute deposition variability with the progressing wet season, which was explained by a negative correlation between heterogeneity of solute deposition and antecedent dry period. The temporal stability of throughfall. patterns was Low during the early wet season, but gained in stability as the wet season progressed. We suggest that rapid plant growth at the beginning of the rainy season is responsible for the lower stability, whereas less vegetative activity during the later rainy season might favor the higher persistence of ""hot"" and ""cold"" spots of throughfall. quantities. The relatively high stability of throughfall patterns during later stages of the wet season may influence processes at the forest floor and in the soil. Solute deposition patterns showed less clear trends but all patterns displayed a short-term stability only. The weak stability of those patterns is apt to impede the formation of solute deposition -induced biochemical microhabitats in the soil. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The knowledge of the relationship between spatial variability of the surface soil water content (theta) and its mean across a spatial domain (theta(m)) is crucial for hydrological modeling and understanding soil water dynamics at different scales. With the aim to compare the soil moisture dynamics and variability between the two land uses and to explore the relationship between the spatial variability of theta and theta(m), this study analyzed sets of surface theta measurements performed with an impedance soil moisture probe, collected 136 times during a period of one year in two transects covering different land uses, i.e., korshinsk peashrub transect (KPT) and bunge needlegrass transect (BNT), in a watershed of the Loess Plateau, China. Results showed that the temporal pattern of theta behaved similarly for the two land uses, with both relative wetter soils during wet period and relative drier soils during dry period recognized in BNT. Soil moisture tended to be temporally stable among different dates, and more stable patterns could be observed for dates with more similar soil water conditions. The magnitude of the spatial variation of theta in KPT was greater than that in ENT. For both land uses, the standard deviation (SD) of theta in general increased as theta(m) increased, a behavior that could be well described with a natural logarithmic function. Convex relationship of CV and theta(m) and the maximum CV for both land uses (43.5% in KPT and 41.0% in BNT) can, therefore, be ascertained. Geostatistical analysis showed that the range in KPT (9.1 m) was shorter than that in BNT (15.1 m). The nugget effects, the structured variability, hence the total variability increased as theta(m) increased. For both land uses, the spatial dependency in general increased with increasing theta(m). 2011 Elsevier B.V. All rights reserved.
Resumo:
The effects of temporal precision constraints and movement amplitude on performance of an interceptive aiming task were examined. Participants were required to strike a moving target object with a 'bat' by moving the bat along a straight path (constrained by a linear slide) perpendicular to the path of the target. Temporal precision constraints were defined in terms of the time period (or window) within which contact with the target was possible. Three time windows were used (approx. 35, 50 and 65 ms) and these were achieved either by manipulating the size of the bat (experiment 1a), the size of the target (experiment 1b) or the speed of the target (experiment 2). In all experiments, movement time (MT) increased in proportion to movement amplitude but was only affected by differences in the temporal precision constraint if this was achieved by variation in the target's speed. In this case the MT was approximately inversely proportional to target speed. Peak movement speed was affected by temporal accuracy constraints in all three experiments: participants reached higher speeds when the temporal precision required was greater. These results are discussed with reference to the speed-accuracy trade-off observed for temporally constrained aiming movements. It is suggested that the MT and speed of interceptive aiming movements may be understood as responses to the spatiotemporal constraints of the task.
Resumo:
Recent detections of high-redshift absorption by both atomic hydrogen and molecular gas in the radio spectra of quasars have provided a powerful tool for measuring possible temporal and spatial variations of physical 'constants' in the Universe. We compare the frequency of high-redshift hydrogen 21-cm absorption with that of associated molecular absorption in two quasars to place new (1 sigma) upper limits on any variation in y = g(p) alpha(2) (where alpha is the fine-structure constant, and g(p) is the proton g-factor) of \Delta y/y\ < 5 x 10(-6) at redshifts z = 0.25 and 0.68. These quasars are separated by a comoving distance of 3000 Mpc (for H-0=75 km s(-1) Mpc(-1) and q(0) = 0). We also derive limits on the time rates of change of \(g) over dot (p)/(g) over dot (p)\ < 1 x 10(-15) yr(-1) and \(alpha) over dot/(a) over dot\ < 5 x 10(-16) yr(-1) between the present epoch and z = 0.68, These limits are more than an order of magnitude smaller than previous results derived from highredshift measurements.
Resumo:
Hippolyte obliquimanus is a small, gonochoric shrimp found in algal substrates along the western Atlantic coast of Brazil, particularly in association with seaweed of the genus Sargassum. We studied population features (sexual ratio, reproductive period and temporal distribution) of H. obliquimanus in southeastern Brazil, including its relationships with the seasonality of banks of this alga. Specimens were collected at two-monthly intervals from March 2005 to January 2006, in Ubatuba Bay. The sex of individuals was checked, and the carapace length measured. In total, 668 individuals were collected: 211 males (0.70-2.50 mm carapace length), 341 non-ovigerous females (0.55-2.90 mm), and 116 ovigerous females (1.55-3.20 mm). Hippolyte obliquimanus showed seasonal-continuous reproduction and variable continuous recruitment. The highest number of animals (75%) was collected in fall-winter. The percentages of ovigerous females/total females (fall-winter: 27%; spring-summer: 26%) and the sexual ratio (fall-winter: 31%; spring-summer: 32%) were practically equal in both periods. The sexual ratio showed a predominance of females in almost all size classes, and we detected a new sex ratio pattern for this species. The seasonal variation in the number of individuals can be related to its migration to deeper areas, due to the decrease in the abundance of Sargassum sp. in shallower waters in spring-summer.
Resumo:
The spatial and temporal variations of Ross River virus infections reported in Queensland, Australia, between 1985 and 1996 were studied by using the Geographic Information System. The notified cases of Ross River virus infection came from 489 localities between 1985 and 1988, 805 between 1989 and 1992, and 1,157 between 1993 and 1996 (X (2)((df = 2)) = 680.9; P < 0.001). There was a marked increase in the number of localities where the cases were reported by 65 percent for the period of 1989-1992 and 137 percent for 1993-1996, compared with that for 1985-1988. The geographic distribution of the notified Ross River virus cases has expanded in Queensland over recent years. As Ross River virus disease has impacted considerably on tourism and industry, as well as on residents of affected areas, more research is required to explore the causes of the geographic expansion of the notified Ross River virus infections.
Resumo:
The basal dendritic arbors of over 500-layer III pyramidal neurones of the macaque cortex were compared by fractal analyses, which provides a measure of the space filling (or branching pattern) of dendritic arbors. Fractal values (D) of individual cells were compared between the cytochrome oxidase (CO)-rich blobs and CO-poor interblobs, of middle and upper layer III, and between sublaminae, in the primary visual area (Vi). These data were compared with those in the CO compartments in the second visual area (V2), and seven other extrastriate cortical areas. (V4, MT, LIP, 7a, TEO, TE and STP). There were significant differences in the fractal dimensions, and therefore the dendritic branching patterns, of cells in striate and extrastriate areas. Of the 55 possible pairwise comparisons of fractal dimension of neurones in different cortical areas (or CO compartments), 39 proved to be significantly different. The markedly different morphologies of pyramidal cells in the different cortical areas may be one of the features that determine the functional signatures of these cells by influencing the number of inputs received by, and propagation of potentials through, their dendritic arbors.
Resumo:
Pyramidal neurones were injected with Lucifer Yellow in slices cut tangential to the surface of area 7m and the superior temporal polysensory area (STP) of the macaque monkey. Comparison of the basal dendritic arbors of supra- and infragranular pyramidal neurones (n=139) that were injected in the same putative modules in the different cortical areas revealed variation in their structure. Moreover, there were relative differences in dendritic morphology of supra- and infragranular pyramidal neurones in the two cortical areas. Shell analyses revealed that layer III pyramidal neurones in area STP had considerably higher peak complexity (maximum number of dendritic intersections per Shell circle) than those in layer V, whereas peak complexities were similar for supra- and infragranular pyramidal neurones in area 7m. In both cortical areas, the basal dendritic trees of layer m pyramidal neurones were characterized by a higher spine density than those in layer V. Calculations of the total number of dendritic spines in the average basal dendritic arbor revealed that layer V pyramidal neurones in area 7m had twice as many spines as cells in layer III. (4535 and 2294, respectively). A similar calculation for neurones in area STP revealed that layer III pyramidal neurones had approximately the same number of spines as cells in layer V (3585 and 3850 spines, respectively). Relative differences in the branching patterns of, and the number of spines in, the basal dendritic arbors of supra- and infragranular pyramidal neurones in the different cortical areas may allow for integration of different numbers of inputs, and different degrees of dendritic processing. These results support the thesis that intra-areal circuitry differs in different cortical areas.
Resumo:
Recent studies have revealed marked regional variation in pyramidal cell morphology in primate cortex. In particular, pyramidal cells in human and macaque prefrontal cortex (PFC) are considerably more spinous than those in other cortical regions. PFC pyramidal cells in the New World marmoset monkey, however, are less spinous than those in man and macaques. Taken together, these data suggest that the pyramidal cell has become more branched and more spinous during the evolution of PFC in only some primate lineages. This specialization may be of fundamental importance in determining the cognitive styles of the different species. However, these data are preliminary, with only one New World and two Old World species having been studied. Moreover, the marmoset data were obtained from different cases. In the present study we investigated PFC pyramidal cells in another New World monkey, the owl monkey, to extend the basis for comparison. As in the New World marmoset monkey, prefrontal pyramidal cells in owl monkeys have relatively few spines. These species differences appear to reflect variation in the extent to which PFC circuitry has become specialized during evolution. Highly complex pyramidal cells in PFC appear not to have been a feature of a common prosimian ancestor, but have evolved with the dramatic expansion of PFC in some anthropoid lineages.
Resumo:
Given the dynamic nature of cardiac function, correct temporal alignment of pre-operative models and intraoperative images is crucial for augmented reality in cardiac image-guided interventions. As such, the current study focuses on the development of an image-based strategy for temporal alignment of multimodal cardiac imaging sequences, such as cine Magnetic Resonance Imaging (MRI) or 3D Ultrasound (US). First, we derive a robust, modality-independent signal from the image sequences, estimated by computing the normalized crosscorrelation between each frame in the temporal sequence and the end-diastolic frame. This signal is a resembler for the left-ventricle (LV) volume curve over time, whose variation indicates di erent temporal landmarks of the cardiac cycle. We then perform the temporal alignment of these surrogate signals derived from MRI and US sequences of the same patient through Dynamic Time Warping (DTW), allowing to synchronize both sequences. The proposed framework was evaluated in 98 patients, which have undergone both 3D+t MRI and US scans. The end-systolic frame could be accurately estimated as the minimum of the image-derived surrogate signal, presenting a relative error of 1:6 1:9% and 4:0 4:2% for the MRI and US sequences, respectively, thus supporting its association with key temporal instants of the cardiac cycle. The use of DTW reduces the desynchronization of the cardiac events in MRI and US sequences, allowing to temporally align multimodal cardiac imaging sequences. Overall, a generic, fast and accurate method for temporal synchronization of MRI and US sequences of the same patient was introduced. This approach could be straightforwardly used for the correct temporal alignment of pre-operative MRI information and intra-operative US images.
Resumo:
Fluorescence confocal microscopy (FCM) is now one of the most important tools in biomedicine research. In fact, it makes it possible to accurately study the dynamic processes occurring inside the cell and its nucleus by following the motion of fluorescent molecules over time. Due to the small amount of acquired radiation and the huge optical and electronics amplification, the FCM images are usually corrupted by a severe type of Poisson noise. This noise may be even more damaging when very low intensity incident radiation is used to avoid phototoxicity. In this paper, a Bayesian algorithm is proposed to remove the Poisson intensity dependent noise corrupting the FCM image sequences. The observations are organized in a 3-D tensor where each plane is one of the images acquired along the time of a cell nucleus using the fluorescence loss in photobleaching (FLIP) technique. The method removes simultaneously the noise by considering different spatial and temporal correlations. This is accomplished by using an anisotropic 3-D filter that may be separately tuned in space and in time dimensions. Tests using synthetic and real data are described and presented to illustrate the application of the algorithm. A comparison with several state-of-the-art algorithms is also presented.