913 resultados para targeted-agents
Resumo:
PURPOSE OF REVIEW: Invasive fungal infections remain a serious complication for critically ill ICU patients. The aim of this article is to review recent efficacy data of newer antifungal agents for the treatment of invasive candidiasis. The influence that recent epidemiological trends, advances in diagnostic testing, and risk prediction methods exert on the optimization of antifungal therapy for critically ill ICU patients will also be reviewed. RECENT FINDINGS: Recent clinical trials have documented the clinical efficacy of the echinocandins and the newer triazoles for the management of invasive candidiasis. Thus far, resistance to echinocandins remains rare. Changes in the epidemiology of Candida spp. causing invasive candidiasis, such as an increasing relative proportion of non-albicans Candida spp., have not been universally reported, although they have important implications for the use of fluconazole as first-line therapy for invasive candidiasis. Efforts to improve the timeliness and accuracy of laboratory diagnostic techniques and clinical prediction models to allow early and accurately targeted antifungal intervention strategies continue. SUMMARY: Echinocandins, given their clinical efficacy, spectrum of activity, and favourable pharmacological properties, are likely to replace fluconazole as initial antifungal agents of choice among critically ill ICU patients. The optimization of patient outcomes will require more accurately targeted early antifungal intervention strategies based upon sensitive and specific biological and clinical markers of risk.
Resumo:
Mycobacterium tuberculosis (Mtb) has acquired resistance and consequently the antibiotic therapeutic options available against this microorganism are limited. In this scenario, the use of usnic acid (UA), a natural compound, encapsulated into liposomes is proposed as a new approach in multidrug-resistant tuberculosis (MDR-TB) therapy. Thus the aim of this study was to evaluate the effect of the encapsulation of UA into liposomes, as well as its combination with antituberculous agents such as rifampicin (RIF) and isoniazid (INH) against MDR-TB clinical isolates. The in vitro antimycobacterial activity of UA-loaded liposomes (UA-Lipo) against MDR-TB was assessed by the microdilution method. The in vitro interaction of UA with antituberculous agents was carried out using checkerboard method. Minimal inhibitory concentration values were 31.25 and 0.98 µg/mL for UA and UA-Lipo, respectively. The results exhibited a synergistic interaction between RIF and UA [fractional inhibitory concentration index (FICI) = 0.31] or UA-Lipo (FICI = 0.28). Regarding INH, the combination of UA or UA-Lipo revealed no marked effect (FICI = 1.30-2.50). The UA-Lipo may be used as a dosage form to improve the antimycobacterial activity of RIF, a first-line drug for the treatment of infections caused by Mtb.
Resumo:
During its life cycle Leishmania spp. face several stress conditions that can cause DNA damages. Base Excision Repair plays an important role in DNA maintenance and it is one of the most conserved mechanisms in all living organisms. DNA repair in trypanosomatids has been reported only for Old World Leishmania species. Here the AP endonuclease from Leishmania (L.) amazonensis was cloned, expressed in Escherichia coli mutants defective on the DNA repair machinery, that were submitted to different stress conditions, showing ability to survive in comparison to the triple null mutant parental strain BW535. Phylogenetic and multiple sequence analyses also confirmed that LAMAP belongs to the AP endonuclease class of proteins.
Resumo:
INTRODUCTION Finding therapeutic alternatives to carbapenems in infections caused by extended-spectrum β-lactamase-producing Escherichia coli (ESBL-EC) is imperative. Although fosfomycin was discovered more than 40 years ago, it was not investigated in accordance with current standards and so is not used in clinical practice except in desperate situations. It is one of the so-called neglected antibiotics of high potential interest for the future. METHODS AND ANALYSIS The main objective of this project is to demonstrate the clinical non-inferiority of intravenous fosfomycin with regard to meropenem for treating bacteraemic urinary tract infections (UTI) caused by ESBL-EC. This is a 'real practice' multicentre, open-label, phase III randomised controlled trial, designed to compare the clinical and microbiological efficacy, and safety of intravenous fosfomycin (4 g/6 h) and meropenem (1 g/8 h) as targeted therapy for this infection; a change to oral therapy is permitted after 5 days in both arms, in accordance with predetermined options. The study design follows the latest recommendations for designing trials investigating new options for multidrug-resistant bacteria. Secondary objectives include the study of fosfomycin concentrations in plasma and the impact of both drugs on intestinal colonisation by multidrug-resistant Gram-negative bacilli. ETHICS AND DISSEMINATION Ethical approval was obtained from the Andalusian Coordinating Institutional Review Board (IRB) for Biomedical Research (Referral Ethics Committee), which obtained approval from the local ethics committees at all participating sites in Spain (22 sites). Data will be presented at international conferences and published in peer-reviewed journals. DISCUSSION This project is proposed as an initial step in the investigation of an orphan antimicrobial of low cost with high potential as a therapeutic alternative in common infections such as UTI in selected patients. These results may have a major impact on the use of antibiotics and the development of new projects with this drug, whether as monotherapy or combination therapy. TRIAL REGISTRATION NUMBER NCT02142751. EudraCT no: 2013-002922-21. Protocol V.1.1 dated 14 March 2014.
Resumo:
Since the beginning of the 1990's, a dozen of new anti-epileptic drugs have been on the market or will be soon. This article reviews the daily clinical utilisation of new anti-epileptic drugs. It considers, without being complete, the current opinions and tendencies. The new anti-epileptic substances are generally as efficient as conventional medications. However, they are better tolerated and are more easily used in combination with conventional anti-epileptic drugs. Polytherapy is certainly the form of treatment, which is used in the most cases of resistant epilepsies. The surgical treatment can be used in only a very limited number of cases. The objective of treatment is the complete control of seizures, with minimum secondary effects. Though this objective is rarely reached, the NAE significantly improves the quality of life of patients suffering from severe epilepsy. The utilisation of NAE is not without risk. Increase in the frequency and severity of seizures may occur; we should remember that severe adverse effects appeared in the post-marketing period of the use of Vigabatrine and Felbamate. Therefore, we must remain vigilant in the clinical use of the anti-epileptic drugs.
Resumo:
Behçet's disease (BD) is universally recognized as a multisystemic inflammatory disease of unknown etiology with chronic course and unpredictable exacerbations: its clinical spectrum varies from pure vasculitic manifestations with thrombotic complications to protean inflammatory involvement of multiple organs and tissues. Treatment has been revolutionized by the progressed knowledge in the pathogenetic mechanisms of BD, involving dysfunction and oversecretion of multiple proinflammatory molecules, chiefly tumor necrosis factor- (TNF-) α, interleukin- (IL-) 1β, and IL-6. However, although biological treatment with anti-TNF-α agents has been largely demonstrated to be effective in BD, not all patients are definite responders, and this beneficial response might drop off over time. Therefore, additional therapies for a subset of refractory patients with BD are inevitably needed. Different agents targeting various cytokines and their receptors or cell surface molecules have been studied: the IL-1 receptor has been targeted by anakinra, the IL-1 by canakinumab and gevokizumab, the IL-6 receptor by tocilizumab, the IL12/23 receptor by ustekinumab, and the B-lymphocyte antigen CD-20 by rituximab. The aim of this review is to summarize all current experiences and the most recent evidence regarding these novel approaches with biological drugs other than TNF-α blockers in BD, providing a valuable addition to the actually available therapeutic armamentarium.
Resumo:
Status epilepticus (SE) refractory to benzodiazepines and other antiepileptic agents is managed with intravenous anesthetic compounds, such as thiopental, propofol or midazolam. These drugs display quite different pharmacodynamic and pharmacokinetic properties, but have not been prospectively compared to date. Their use is clearly advocated for the treatment of generalized convulsive SE, whereas partial-complex, or absence SE are generally managed less aggressively, in consideration of their better prognosis. The most important aspect seems to be related to the correct use of these anesthetics in the right context, rather than the choice of one specific compound. An electroencephalographic burst-suppression should be targeted for about 24hour, before progressive weaning of the dosage under EEG monitoring. If this approach proves unsuccessful, the use of other drugs, including inhalational anesthetics, has been described.
Resumo:
Graft vasculopathy is an accelerated form of coronary artery disease that occurs in transplanted hearts. Despite major advances in immunosuppression, the prevalence of the disease has remained substantially unchanged during the last two decades. According to the 'response to injury' paradigm, graft vasculopathy is the result of a continuous inflammatory response to tissue injury initiated by both alloantigen-dependent and independent stress responses. Experimental evidence suggests that these responses may become self-sustaining, as allograft re-transplantation into the donor strain at a later stage fails to prevent disease progression. Histological evidence of endothelitis and arteritis, in association with intima fibrosis and atherosclerosis, reflects the central role of alloimmunity and inflammation in the development of arterial lesions. Experimental results in gene-targeted mouse models indicate that cellular and humoral immune responses are both involved in the pathogenesis of graft vasculopathy. Circulating antibodies against donor endothelium are found in a significant number of patients, but their pathogenic role is still controversial. Alloantigen-independent factors include donor-transmitted coronary artery disease, surgical trauma, ischaemia-reperfusion injury, viral infections, hyperlipidaemia, hypertension, and glucose intolerance. Recent therapeutic advances include the use of novel immunosuppressive agents such as sirolimus (rapamycin), HMG-CoA reductase inhibitors, calcium channel blockers, and angiotensin converting enzyme inhibitors. Optimal treatment of cardiovascular risk factors remains of paramount importance.
Resumo:
Efficient vaccination against infectious agents and tumors depends on specific antigen targeting to dendritic cells (DCs). We report here that biosafe coronavirus-based vaccine vectors facilitate delivery of multiple antigens and immunostimulatory cytokines to professional antigen-presenting cells in vitro and in vivo. Vaccine vectors based on heavily attenuated murine coronavirus genomes were generated to express epitopes from the lymphocytic choriomeningitis virus glycoprotein, or human Melan-A, in combination with the immunostimulatory cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF). These vectors selectively targeted DCs in vitro and in vivo resulting in vector-mediated antigen expression and efficient maturation of DCs. Single application of only low vector doses elicited strong and long-lasting cytotoxic T-cell responses, providing protective antiviral and antitumor immunity. Furthermore, human DCs transduced with Melan-A-recombinant human coronavirus 229E efficiently activated tumor-specific CD8(+) T cells. Taken together, this novel vaccine platform is well suited to deliver antigens and immunostimulatory cytokines to DCs and to initiate and maintain protective immunity.
Resumo:
The sentinel or tumor-draining lymph node (tdLN) serves as a metastatic niche for many solid tumors and is altered via tumor-derived factors that support tumor progression and metastasis. tdLNs are often removed surgically, and therapeutic vaccines against tumor antigens are typically administered systemically or in non-tumor-associated sites. Although the tdLN is immune-suppressed, it is also antigen experienced through drainage of tumor-associated antigens (TAA), so we asked whether therapeutic vaccines targeting the tdLN would be more or less effective than those targeting the non-tdLN. Using LN-targeting nanoparticle (NP)-conjugate vaccines consisting of TAA-NP and CpG-NP, we compared delivery to the tdLN versus non-tdLN in two different cancer models, E.G7-OVA lymphoma (expressing the nonendogenous TAA ovalbumin) and B16-F10 melanoma. Surprisingly, despite the immune-suppressed state of the tdLN, tdLN-targeting vaccination induced substantially stronger cytotoxic CD8+ T-cell responses, both locally and systemically, than non-tdLN-targeting vaccination, leading to enhanced tumor regression and host survival. This improved tumor regression correlated with a shift in the tumor-infiltrating leukocyte repertoire toward a less suppressive and more immunogenic balance. Nanoparticle coupling of adjuvant and antigen was required for effective tdLN targeting, as nanoparticle coupling dramatically increased the delivery of antigen and adjuvant to LN-resident antigen-presenting cells, thereby increasing therapeutic efficacy. This work highlights the tdLN as a target for cancer immunotherapy and shows how its antigen-experienced but immune-suppressed state can be reprogrammed with a targeted vaccine yielding antitumor immunity.
Resumo:
This study evaluated the efficacy of lactic acid bacteria (LAB) isolated from fresh fruits and vegetables as biocontrol agents against the phytopathogenic and spoilage bacteria and fungi, Xanthomonas campestris, Erwinia carotovora, Penicillium expansum, Monilinia laxa, and Botrytis cinerea. The antagonistic activity of 496 LAB strains was tested in vitro and all tested microorganisms except P. expansum were inhibited by at least one isolate. The 496 isolates were also analyzed for the inhibition of P. expansum infection in wounds of Golden Delicious apples. Four strains (TC97, AC318, TM319, and FF441) reduced the fungal rot diameter of the apples by 20%; only Weissella cibaria strain TM128 decreased infection levels by 50%. Cell-free supernatants of selected antagonistic bacteria were studied to determine the nature of the antimicrobial compounds produced. Organic acids were the preferred mediators of inhibition but hydrogen peroxide was also detected when strains BC48, TM128, PM141 and FF441 were tested against E. carotovora. While previous reports of antifungal activity by LAB are scarce, our results support the potential of LAB as biocontrol agents against postharvest rot. [Int Microbiol 2008; 11(4):231-236]
Resumo:
PURPOSE Inotuzumab ozogamicin (CMC-544) is an antibody-targeted chemotherapy agent composed of a humanized anti-CD22 antibody conjugated to calicheamicin, a potent cytotoxic agent. This was a phase I study to determine the maximum-tolerated dose (MTD), safety, and preliminary efficacy of inotuzumab ozogamicin in an expanded MTD cohort of patients with relapsed or refractory CD22(+) B-cell non-Hodgkin's lymphoma (NHL). PATIENTS AND METHODS Inotuzumab ozogamicin was administered intravenously as a single agent once every 3 or 4 weeks at doses ranging from 0.4 to 2.4 mg/m(2). Outcomes included MTD, safety, pharmacokinetics, response, progression-free survival (PFS), and overall survival. Results Seventy-nine patients were enrolled. The MTD was determined to be 1.8 mg/m(2). Common adverse events at the MTD were thrombocytopenia (90%), asthenia (67%), and nausea and neutropenia (51% each). The objective response rate at the end of treatment was 39% for the 79 enrolled patients, 68% for all patients with follicular NHL treated at the MTD, and 15% for all patients with diffuse large B-cell lymphoma treated at the MTD. Median PFS was 317 days (approximately 10.4 months) and 49 days for patients with follicular NHL and diffuse large B-cell lymphoma, respectively. CONCLUSION Inotuzumab ozogamicin has demonstrated efficacy against CD22(+) B-cell NHL, with reversible thrombocytopenia as the main toxicity.
Resumo:
BACKGROUND: Infective endocarditis (IE) mostly occurs after spontaneous low-grade bacteremia. Thus, IE cannot be prevented by circumstantial antibiotic prophylaxis. Platelet activation following bacterial-fibrinogen interaction or thrombin-mediated fibrinogen-fibrin polymerization is a critical step in vegetation formation. We tested the efficacy of antiplatelet and antithrombin to prevent experimental IE. METHODS: A rat model of experimental IE following prolonged low-grade bacteremia mimicking smoldering bacteremia in humans was used. Prophylaxis with antiplatelets (aspirin, ticlopidine [alone or in combination], eptifibatide, or abciximab) or anticoagulants (antithrombin dabigatran etexilate or anti-vitamin K acenocoumarol) was started 2 days before inoculation with Streptococcus gordonii or Staphylococcus aureus. Valve infection was assessed 24 hours later. RESULTS: Aspirin plus ticlopidine, as well as abciximab, protected 45%-88% of animals against S. gordonii and S. aureus IE (P < .05). Dabigatran etexilate protected 75% of rats against IE due to S. aureus (P < .005) but failed to protect against S. gordonii (<30% protection). Acenocoumarol was ineffective. CONCLUSIONS: Antiplatelet and direct antithrombin agents may be useful in the prophylaxis of IE in humans. In particular, the potential dual benefit of dabigatran etexilate might be reconsidered for patients with prosthetic valves, who require life-long anticoagulation and in whom S. aureus IE is associated with high mortality.
Resumo:
Progresses in pediatric oncology over the last decades have been dramatic and allow current cure rates above 80%. There are mainly due to multicentre clinical trials aiming at optimizing chemotherapy protocols as well as local therapies in a stepwise approach. Most of the new anticancer drugs currently in development are based on targeted therapies, directed to specific targets present only in or on tumor cells, like growth factor receptors, mechanisms involved in proliferation, DNA repair, apoptosis, tumor invasion or angiogenesis. Concerning bone marrow transplantation also, new strategic approaches are in advanced development. They aim at reducing treatment induced toxicity and enhancing efficacy at the same time. This short paper would like to point out these new technologies, which should be known by the general practitioner.