955 resultados para structure characterization
Resumo:
The structure of the large proteoglycan present in the bullfrog epiphyseal cartilage was studied by immunochemical and biochemical methods. The isolated monomer showed a polydisperse behavior on Sepharose CL2B, with a peak at Kav = 0.14. Chondroitin sulfate chains were identified by HPLC analysis of the products formed by chondroitinase digestion and mercuric acetate treatment. These chains have approximately 38 disaccharides, a Di45:Di68 ratio of 1.6 and GalNAc4S + GalNAc4,6S are the main non-reducing terminals. Keratan sulfate was identified by the use of two monoclonal antibodies in Western blots after chondroitinase ABC treatment. A keratan sulfate-rich region (~110 kDa) was isolated by sequential treatment with chondroitinase ABC and proteases. We also employed antibodies in Western blotting experiments and showed that the full length deglycosylated core protein is about 300 kDa after SDS-PAGE. Domain-specific antibodies revealed the presence of immunoreactive sites corresponding to G1/G2 and G3 globular domains and the characterization of this large proteoglycan as aggrecan. The results indicate the high conservation of the aggrecan domain structure in this lower vertebrate.
Resumo:
Trypsin is a serino-protease with a polypeptide chain of 223 amino acid residues and contains six disulfide bridges. It is a globular protein with a predominance of antiparallel ß-sheet and helix in its secondary structure and has two domains with similar structures. We assessed the stability of ß-trypsin in the acid pH range using microcalorimetric (differential scanning calorimetry) techniques. Protein concentrations varied in the range of 0.05 to 2.30 mg/ml. Buffer solutions of 50.0 mM ß-alanine and 20.0 mM CaCl2 at different pH values (from 2.0 to 4.2) and concentrations of sorbitol (1.0 and 2.0 M), urea (0.5 M) or guanidinium hydrochloride (0.5 and 1.0 M) were used. The data suggest that we are studying the same conformational transition of the protein in all experimental situations using pH, sorbitol, urea and guanidinium hydrochloride as perturbing agents. The observed van't Hoff ratios (deltaHcal/deltaHvH) of 1.0 to 0.5 in the pH range of 3.2 to 4.2 suggest protein aggregation. In contrast, deltaHcal/deltaHvH ratios equal to one in the pH range of 2.0 to 3.2 suggest that the protein unfolds as a monomer. At pH 3.00, ß-trypsin unfolded with Tm = 54ºC and deltaH = 101.8 kcal/mol, and the change in heat capacity between the native and unfolded forms of the protein (deltaCp) was estimated to be 2.50 ± 0.07 kcal mol-1 K-1. The stability of ß-trypsin calculated at 298 K was deltaG D = 5.7 kcal/mol at pH 3.00 and deltaG D = 15.2 kcal/mol at pH 7.00, values in the range expected for a small globular protein.
Resumo:
The hen’s egg is a source of new life. Therefore, it contains many biologically active compounds. In addition to being a very nutritious food and also commonly used in the food industry due to its many techno-functional properties, the egg can serve as a source of compounds used as nutra-, pharmaand cosmeceuticals. One such interesting compound is ovomucin, an egg white protein responsible for the gel-like properties of thick egg white. Previous studies have indicated that ovomucin and ovomucin-derived peptides have several different bioactive properties. The objectives of the present study were to develop isolation methods for ovomucin, to characterize the structure of ovomucin, to compare various egg fractions as sources of ovomucin, to study the effects of various dissolving methods for ovomucin, and to investigate the bioactive properties of ovomucin and ovomucin-derived peptides. A simple and rapid method for crude ovomucin separation was developed. By using this method crude ovomucin was isolated within hours, compared to the 1-2 days (including a dialysis step) needed when using several other methods. Structural characterization revealed that ovomucin is composed of two subunits, α- and β-ovomucin, as egg white protein formerly called α1-ovomucin seemed to be ovostatin. However, it might be possible that ovostatin is associated within β- and α-ovomucin. This interaction could even have some effect on the physical nature of various egg white layers. Although filtration by-product fraction was a very prominent source of both crude and β-ovomucin, process development has reduced its amount so significantly that it has no practical meaning anymore. Thus, the commercial liquid egg white is probably the best option, especially if it generally contains amounts of β-ovomucin as high as were found in these studies. Crude ovomucin was dissolved both by using physical and enzymic methods. Although sonication was the most effective physical method for ovomucin solubilisation, colloid milling seemed to be a very promising alternative. A milk-like, smooth and opaque crude ovomucin suspension was attained by using a colloid mill. The dissolved ovomucin fractions were further tested for bioactive properties, and it was found that three dissolving methods tested produced moderate antiviral activity against Newcastle disease virus, namely colloid milling, enzymatic hydrolysis and a combination of sonicaton and enzymatic hydrolysis. Moreover, trypsin-digested crude ovomucin was found to have moderate antiviral activity against avian influenza virus: both subtype H5 and H7.
Resumo:
Flavobacterium psychrophilum is the etiological agent of bacterial cold-water disease (BCWD) causing high fish mortalities and significant economic losses to the freshwater salmonid aquaculture industry around the world. Today BCWD outbreaks are mainly treated with environmentally hazardous antimicrobial agents and alternative preventative measures are urgently needed in order to ensure the well-being of animals and the sustainability of aquaculture. The diversity of pathogenic bacteria challenges the development of universal control strategies and in many cases the pathogen population structure, i.e. the total genetic diversity of the species must be taken into account. This work integrates the tools of modern molecular biology and conventional phenotypic microbiology to gain knowledge about the diversity and population structure of F. psychrophilum. The present work includes genetic characterization of a large collection of isolates collected from diverse origins and years, from aquaculture in a whole region including different countries, and provides the first international validation of a universal multilocus sequence typing (MLST) approach for unambiguous genetic typing of F. psychrophilum. Population structure analyses showed that the global F. psychrophilum population is subdivided into pathogenic species-specific clones, of which one particular genetic lineage, clonal complex CC-ST2, has been responsible for the majority of BCWD outbreaks in rainbow trout (Oncorhynchus mykiss) in European aquaculture facilities over several decades. Genotypic and phenotypic population heterogeneity affecting antimicrobial resistance in F. psychrophilum within BCWD outbreaks was discovered. Specific genotypes were associated with severe infections in farmed rainbow trout and Atlantic salmon (Salmo salar), and in addition to high adherence, antimicrobial resistance was strongly associated with outbreak strains. The study brought additional support for the hypothesis of an epidemic F. psychrophilum population structure, where recombination is an important force for the generation and maintenance of genetic diversity, and a significant contribution towards mapping the genetic diversity of this important fish pathogen. Evidence indicating dissemination of virulent strains with commercial movement of fish and fish products was strengthened.
Resumo:
The glycosylation of glycoconjugates and the biosynthesis of polysaccharides depend on nucleotide-sugars which are the substrates for glycosyltransferases. A large proportion of these enzymes are located within the lumen of the Golgi apparatus as well as the endoplasmic reticulum, while many of the nucleotide-sugars are synthesized in the cytosol. Thus, nucleotide-sugars are translocated from the cytosol to the lumen of the Golgi apparatus and endoplasmic reticulum by multiple spanning domain proteins known as nucleotide-sugar transporters (NSTs). These proteins were first identified biochemically and some of them were cloned by complementation of mutants. Genome and expressed sequence tag sequencing allowed the identification of a number of sequences that may encode for NSTs in different organisms. The functional characterization of some of these genes has shown that some of them can be highly specific in their substrate specificity while others can utilize up to three different nucleotide-sugars containing the same nucleotide. Mutations in genes encoding for NSTs can lead to changes in development in Drosophila melanogaster or Caenorhabditis elegans, as well as alterations in the infectivity of Leishmania donovani. In humans, the mutation of a GDP-fucose transporter is responsible for an impaired immune response as well as retarded growth. These results suggest that, even though there appear to be a fair number of genes encoding for NSTs, they are not functionally redundant and seem to play specific roles in glycosylation.
Resumo:
Shigella spp are Gram-negative, anaerobic facultative, non-motile, and non-sporulated bacilli of the Enterobacteriaceae family responsible for "Shigellosis" or bacillary dysentery, an important cause of worldwide morbidity and mortality. However, despite this, there are very few epidemiological studies about this bacterium in Brazil. We studied the antibiotic resistance profiles and the clonal structure of 60 Shigella strains (30 S. flexneri and 30 S. sonnei) isolated from shigellosis cases in different cities within the metropolitan area of Campinas, State of São Paulo, Brazil. We used the following well-characterized molecular techniques: enterobacterial repetitive intergenic consensus, repetitive extragenic palindromic, and double-repetitive element-polymerase chain reaction to characterize the bacteria. Also, the antibiotic resistance of the strains was determined by the diffusion disk method. Many strains of S. flexneri and S. sonnei were found to be multi-resistant. S. flexneri strains were resistant to ampicillin in 83.3% of cases, chloramphenicol in 70.0%, streptomycin in 86.7%, sulfamethoxazole in 80.0%, and tetracycline in 80.0%, while a smaller number of strains were resistant to cephalothin (3.3%) and sulfazotrim (10.0%). S. sonnei strains were mainly resistant to sulfamethoxazole (100.0%) and tetracycline (96.7%) and, to a lesser extent, to ampicillin (6.7%) and streptomycin (26.7%). Polymerase chain reaction-based typing supported the existence of specific clones responsible for the shigellosis cases in the different cities and there was evidence of transmission between cities. This clonal structure would probably be the result of selection for virulence and resistance phenotypes. These data indicate that the human sanitary conditions of the cities investigated should be improved.
Resumo:
Ellagitannins are secondary metabolites that are produced by plants. Among other features, they are assumed to function as plants’ defensive compounds against plant-eating herbivores. This thesis focuses on a theory, which suggests that the biological activity of ellagitannins is based on their tendency to oxidize at the highly alkaline gut conditions of insect herbivores (oxidative activity). To study the biological activities of ellagitannins, a wide variety of structurally different ellagitannins were purified from different plant species by using liquid chromatographic techniques. The structures were characterized with the aid of spectrometric methods. Based on the acquired data, it was also possible to create a scheme, which enables the classification and even identification of ellagitannins from plant extracts without the need to isolate each compound for individual characterization. The biological activities of ellagitannins were determined with methods that are based on the abilities of the compounds to scavenge radicals, chelate iron ions, and on their rate of oxidation at high pH. The results showed that ellagitannins possess oxidative activities both at high and neutral pH, and that their activities depend on structure. The occurrence, distribution and content of ellagitannins in Finnish plant species were also studied. The specific ellagitannin profiles of the studied plant species were found to correlate well with their taxonomic classification.
Resumo:
The retina is a highly differentiated tissue with a complex layered structure that has been extensively characterized. However, most of the previous studies focused on the histology of the central retina while little is known about the cellular composition, organization and function of the marginal retina. Recent research has identified a subpopulation of multipotential progenitor cells in the marginal regions of the retina, closest to the ciliary body ("ciliary marginal zone"). These cells are capable of differentiation in response to an appropriate stimulus. Thus, it is possible that the structure and composition of the marginal retina are distinct from those of the central retina to accommodate the potential addition of newly formed neurons. To characterize the cellular profile of the chick marginal retina, we labeled it immunohistochemically for markers whose staining pattern is well established in the central retina: calbindin, calretinin, protein kinase C, and choline acetyltransferase. Calbindin was present at very low levels in the marginal retina putative photoreceptor layer. Calretinin-positive horizontal cells were also sparse close to the ciliary marginal zone. The bipolar cells in the marginal outer plexiform layer were positive for anti-protein kinase C antibodies, but the density of labeling was also decreased in relation to the central retina. In contrast, the marginal starburst cholinergic amacrine cell pattern was very similar to the central retina. From these data we conclude that the structure of the marginal retina is significantly different from that of the central retina. In particular, the expression of late retina markers in the marginal retina decreased in comparison to the central retina.
Resumo:
The Brazil nut (Bertholletia excelsea H. B. K.) is noteworthy for its high content of lipids and proteins of elevated biological value and these factors justify the need for further research and incentives for the manufacturing of new trade products. In the present study we sought new forms of technological use of these nuts by the food industry, through their processing as flour, with no alteration in its energy content. The results after its elaboration showed a product with high energy value (431.48 kcal.100 g-1), protein content of 45.92 g.100 g-1, and fiber of 17.14%. The thermal analyses indicate that the introduction of another protein component, such as soy protein isolate, does not alter the reactions or thermal behavior. On the other hand, morphological analyses revealed granular structures similar to the structure of globular proteins. It was observed that after processing to obtain the flour, the product maintains its protein-energy content, as well as its characteristics when subjected to high temperatures.
Resumo:
Starch is found in sugarcane as a storage polysaccharide. Starch concentrations vary widely depending on the country, variety, developmental stage, and growth conditions. The purpose of this study was to determine the starch content in different varieties of sugarcane, between May and November 2007, and some characteristics of sugarcane starch such as structure and granules size; gelatinization temperature; starch solution filterability; and susceptibility to glucoamylase, pullulanase, and commercial bacterial and fungal α-amylase enzymes. Susceptibility to debranching amylolytic isoamylase enzyme from Flavobacterium sp. was also tested. Sugarcane starch had spherical shape with a diameter of 1-3 µm. Sugarcane starch formed complexes with iodine, which showed greater absorption in the range of 540 to 620 nm. Sugarcane starch showed higher susceptibility to glucoamylase compared to that of waxy maize, cassava, and potato starch. Sugarcane starch also showed susceptibility to debranching amylolytic pullulanases similar to that of waxy rice starch. It also showed susceptibility to α-amylase from Bacillus subtilis, Bacillus licheniformis, and Aspergillus oryzae similar to that of the other tested starches producing glucose, maltose, maltotriose, maltotetraose, maltopentose and limit α- dextrin.
Resumo:
Building Integrated Photovoltaics (BIPV) are considered as the future of photovoltaic (PV) technology. The advantage of BIPV system is its multi-functionality; they fulfil the functions of a building envelope with the added benefit of generating power by replacing the traditional roofing and façade materials with PV that generate power. In this thesis, different types of PV cells and modules have been described in detail with their efficiencies and usage trends in the last decade. The different BIPV products for roof and façade are discussed in detail giving several examples. The electricity generation potential of BIPV in selected countries is compared with their actual electricity consumption. Further, the avoided greenhouse gas (GHG) emissions associated with electricity generation from traditional sources and transportation and distribution (T&D) losses are calculated. The results illustrate huge savings in GHGs. In BIPV different types of façade and backsheets are used. In this thesis, selected backsheets and façade were characterized in terms of their surface structure identification using infrared spectroscopy (FTIR-ATR), scanning electron microscopy with energy dispersive X-ray (SEM-EDX) and physical characterization using surface energy measurements. By using FTIR-ATR, surface polymeric materials were identified and with SEM-EDX, identification of the surface elements was possible. Surface energy measurements were useful in finding the adhesives and knowing the surface energies of the various backsheets and façade. The strength of adhesion between the facade and backsheets was studied using peel test. Four different types of adhesives were used to study the fracture pattern and peel tests values to identify the most suitable adhesive. It was found out that pretreatment increased the adhesive strength significantly.
Resumo:
For advanced devices in the application fields of data storage, solar cell and biosensing, one of the major challenges to achieve high efficiency is the fabrication of nanopatterned metal oxide surfaces. Such surfaces often require both precise structure at the nanometer scale and controllable patterned structure at the macro scale. Nowadays, the dominating candidates to fabricate nanopatterned surfaces are the lithographic technique and block-copolymer masks, most of which are unfortunately costly and inefficient. An alternative bottom-up approach, which involves organic/inorganic self-assembly and dip-coating deposition, has been studied intensively in recent years and has proven to be an effective technique for the fabrication of nanoperforated metal oxide thin films. The overall objective of this work was to optimize the synthesis conditions of nanoperforated TiO2 (NP-TiO2) thin films, especially to be compatible with mixed metal oxide systems. Another goal was to develop fabrication and processing of NP-TiO2 thin films towards largescale production and seek new applications for solar cells and biosensing. Besides the traditional dip-coating and drop-casting methods, inkjet printing was used to prepare thin films of metal oxides, with the advantage of depositing the ink onto target areas, further enabling cost-effective fabrication of micro-patterned nanoperforated metal oxide thin films. The films were characterized by water contact angle determination, Atomic Force Microscopy, Scanning Electron Microscopy, X-ray Photoelectron Spectroscopy and Grazing Incidence XRay Diffraction. In this study, well-ordered zinc titanate nanoperforated thin films with different Zn/Ti ratios were produced successfully with zinc precursor content up to 50 mol%, and the dominating phase was Zn2Ti3O8. NP-TiO2 structures were also obtained by a cost-efficient means, namely inkjet printing, at both ambient temperature and 60 °C. To further explore new biosensing applications of nanoperforated oxide thin films, inkjet printing was used for the fabrication of both continuous and patterned polymeric films onto NP-TiO2 and perfluorinated phosphate functionalized NP-TiO2 substrates, respectively. The NP-TiO2 films can be also functionalized with a fluoroalkylsilane, resulting in hydrophobic surfaces on both titania and silica. The surface energy contrast in the nanoperforations can be tuned by irradiating the films with UV light, which provides ideal model systems for wettability studies.
Resumo:
Two classes of building blocks have been prepared and characterized and their coordination chemistry explored working towards the preparation of new molecule-based magnetic materials. In the first project, the amine functionality of 3,3'-diamino-2,2'- bipyridine was exploited for the preparation of a new family of ligands (H2L 1)-(H2L 4). The molecular structures of three ligands have been fully characterized by X-ray crystallography. [molecular structure diagram will not copy here, but is available in full pdf.] The coordination chemistry of these ligands with divalent first row transition metal ions was investigated. For ligand (H2L1), the molecular structures of four coordination complexes with stoichiometries [Zn2(Ll)(OAc)(MeO)]2 (I), [Cu2(L1)(OAc)2 (II), [Li(L1)]3 (III), and [Ni(L1)]3 (IV) were determined by X-ray crystallography. For ligand (H2L2), a Cu(II) complex of stoichiometry [Cu3(L2)(OAc)3MeO] (V) was determined by X-ray crystallography. The magnetic properties of complexes (II), (III), and (V) have been fully elucidated. In project two, synthetic strategies for the preparation of porphyrin molecules bearing triol substituents is presented. Following this approach, three new porphyrin derivatives have been prepared and characterized [Zn(HPTPP-CH2C(CH20H)3)] (VI), [P(TPP)(OCH2C(CH2)H)3)2]+CL- (VII), and [P(OEP)(C6H5)(OCH2C(CH2OH)3)]+Cl- (VIII). Attempts to exchange the labile methoxide bridges of a tetraironIIl single molecule magnet of stoichiometry [Fe4(OMe)6(dpm)6] (Hdpm = dipivaloylmethane) with the triol appended porphyrins will be discussed. [molecular structure diagram will not copy here, but is available in full pdf.]
Resumo:
L’électrofilage est une technique permettant de fabriquer des fibres polymériques dont le diamètre varie entre quelques nanomètres et quelques microns. Ces fibres ont donc un rapport surface/volume très élevé. Les fibres électrofilées pourraient trouver des applications dans le relargage de médicaments et le génie tissulaire, comme membranes et capteurs chimiques, ou dans les nanocomposites et dispositifs électroniques. L’électrofilage était initialement utilisé pour préparer des toiles de fibres désordonnées, mais il est maintenant possible d’aligner les fibres par l’usage de collecteurs spéciaux. Cependant, il est important de contrôler non seulement l’alignement macroscopique des fibres mais aussi leur orientation au niveau moléculaire puisque l’orientation influence les propriétés mécaniques, optiques et électriques des polymères. Les complexes moléculaires apparaissent comme une cible de choix pour produire des nanofibres fortement orientées. Dans les complexes d’inclusion d’urée, les chaînes polymères sont empilées dans des canaux unidimensionnels construits à partir d’un réseau tridimensionnel de molécules d’urée liées par des ponts hydrogène. Ainsi, les chaînes polymère sonts très allongées à l’échelle moléculaire. Des nanofibres du complexe PEO-urée ont été préparées pour la première fois par électrofilage de suspensions et de solutions. Tel qu’attendu, une orientation moléculaire inhabituellement élevée a été observée dans ces fibres. De tels complexes orientés pourraient être utilisés à la fois dans des études fondamentales et dans la préparation de matériaux hiérarchiquement structurés. La méthode d’électrofilage peut parfois aussi être utilisée pour préparer des matériaux polymériques métastables qui ne peuvent pas être préparés par des méthodes conventionnelles. Ici, l’électrofilage a été utilisé pour préparer des fibres des complexes stables (α) et "métastables" (β) entre le PEO et l’urée. La caractérisation du complexe β, qui était mal connu, révèle un rapport PEO:urée de 12:8 appartenant au système orthorhombique avec a = 1.907 nm, b = 0.862 nm et c = 0.773 nm. Les chaînes de PEO sont orientées selon l’axe de la fibre. Leur conformation est significativement affectée par les ponts hydrogène. Une structure en couches a été suggérée pour la forme β, plutôt que la structure conventionnelle en canaux adoptée par la forme α. Nos résultats indiquent que le complexe β est thermodynamiquement stable avant sa fonte et peut se transformer en forme α et en PEO liquide par un processus de fonte et recristallisation à 89 ºC. Ceci va dans le sens contraire aux observations faites avec le complexe β obtenu par trempe du complexe α fondu. En effet, le complexe β ainsi obtenu est métastable et contient des cristaux d’urée. Il peut subir une transition de phases cinétique solide-solide pour produire du complexe α dans une vaste gamme de températures. Cette transition est induite par un changement de conformation du PEO et par la formation de ponts hydrogène intermoléculaires entre l’urée et le PEO. Le diagramme de phases du système PEO-urée a été tracé sur toute la gamme de compositions, ce qui a permis d’interpréter la formation de plusieurs mélanges qui ne sont pas à l’équilibre mais qui sont été observés expérimentalement. La structure et le diagramme de phases du complexe PEO-thiourée, qui est aussi un complexe très mal connu, ont été étudiés en détail. Un rapport molaire PEO :thiourée de 3:2 a été déduit pour le complexe, et une cellule monoclinique avec a = 0.915 nm, b = 1.888 nm, c = 0.825 nm et β = 92.35º a été déterminée. Comme pour le complexe PEO-urée de forme β, une structure en couches a été suggérée pour le complexe PEO-thiourée, dans laquelle les molécules de thiourée seraient disposées en rubans intercalés entre deux couches de PEO. Cette structure en couches pourrait expliquer la température de fusion beaucoup plus faible des complexes PEO-thiourée (110 ºC) et PEO-urée de forme β (89 ºC) en comparaison aux structures en canaux du complexe PEO-urée de forme α (143 ºC).
Resumo:
La détermination de la structure tertiaire du ribosome fut une étape importante dans la compréhension du mécanisme de la synthèse des protéines. Par contre, l’élucidation de la structure du ribosome comme tel ne permet pas une compréhension de sa fonction. Pour mieux comprendre la nature des relations entre la structure et la fonction du ribosome, sa structure doit être étudiée de manière systématique. Au cours des dernières années, nous avons entrepris une démarche systématique afin d’identifier et de caractériser de nouveaux motifs structuraux qui existent dans la structure du ribosome et d’autres molécules contenant de l’ARN. L’analyse de plusieurs exemples d’empaquetage de deux hélices d’ARN dans la structure du ribosome nous a permis d’identifier un nouveau motif structural, nommé « G-ribo ». Dans ce motif, l’interaction d’une guanosine dans une hélice avec le ribose d’un nucléotide d’une autre hélice donne naissance à un réseau d’interactions complexes entre les nucléotides voisins. Le motif G-ribo est retrouvé à 8 endroits dans la structure du ribosome. La structure du G-ribo possède certaines particularités qui lui permettent de favoriser la formation d’un certain type de pseudo-nœuds dans le ribosome. L’analyse systématique de la structure du ribosome et de la ARNase P a permis d’identifier un autre motif structural, nommé « DTJ » ou « Double-Twist Joint motif ». Ce motif est formé de trois courtes hélices qui s’empilent l’une sur l’autre. Dans la zone de contact entre chaque paire d’hélices, deux paires de bases consécutives sont surenroulées par rapport à deux paires de bases consécutives retrouvées dans l’ARN de forme A. Un nucléotide d’une paire de bases est toujours connecté directement à un nucléotide de la paire de bases surenroulée, tandis que les nucléotides opposés sont connectés par un ou plusieurs nucléotides non appariés. L’introduction d’un surenroulement entre deux paires de bases consécutives brise l’empilement entre les nucléotides et déstabilise l’hélice d’ARN. Dans le motif DTJ, les nucléotides non appariés qui lient les deux paires de bases surenroulées interagissent avec une des trois hélices qui forment le motif, offrant ainsi une stratégie élégante de stabilisation de l’arrangement. Pour déterminer les contraintes de séquences imposées sur la structure tertiaire d’un motif récurrent dans le ribosome, nous avons développé une nouvelle approche expérimentale. Nous avons introduit des librairies combinatoires de certains nucléotides retrouvés dans des motifs particuliers du ribosome. Suite à l’analyse des séquences alternatives sélectionnées in vivo pour différents représentants d’un motif, nous avons été en mesure d’identifier les contraintes responsables de l’intégrité d’un motif et celles responsables d’interactions avec les éléments qui forment le contexte structural du motif. Les résultats présentés dans cette thèse élargissent considérablement notre compréhension des principes de formation de la structure d’ARN et apportent une nouvelle façon d’identifier et de caractériser de nouveaux motifs structuraux d’ARN.