924 resultados para storm
Resumo:
The current understanding of wildfire effects on water chemistry is limited by the quantification of the elemental dissolution rates from ash and element release rate from the plant litter, as well as quantification of the specific ash contribution to stream water chemistry. The main objective of the study was to provide such knowledge through combination of experimental modelling, field data and end-member mixing analysis (EMMA) of wildfire impact on a watershed scale. The study concerns watershed effects of fire in the Indian subcontinent, a region that is typically not well represented in the fire science literature. In plant litter ash, major elements are either hosted in readily-soluble phases (K, Mg) such as salts, carbonates and oxides or in less-soluble carrier-phases (Si, Ca) such as amorphous silica, quartz and calcite. Accordingly, elemental release rates, inferred from ash leaching experiments in batch reactor, indicated that the element release into solution followed the order K > Mg > Na > Si > Ca. Experiments on plant litter leaching in mixed-flow reactor indicated two dissolution regimes: rapid, over the week and slower over the month. The mean dissolution rates at steady-state (R-ss) indicated that the release of major elements from plant litter followed the order Ca > Si > Cl > Mg > K > Na. R-ss for Si and Ca for tree leaves and herbaceous species are similar to those reported for boreal and European tree species and are higher than that from the dissolution of soil clay minerals. This identifies tropical plant litters as important source of Si and Ca for tropical surface waters. In the wildfire-impacted year 2004, the EMMA indicated that the streamflow composition (Ca, K, Mg, Na, Si, Cl) was controlled by four main sources: rainwater, throughfall, ash leaching and soil solution. The influence of the ash end-member was maximal early in the rainy season (the two first storm events) and decreased later in the rainy season, when the stream was dominated by the throughfall end-member. The contribution of plant litter decay to the streamwater composition for a year not impacted by wildfire is significant with estimated solute fluxes originating from this decay greatly exceed, for most major elements, the annual elemental dissolved fluxes at the Mule Hole watershed outlet. This highlighted the importance of solute retention and vegetation back uptake processes within the soil profile. Overall, the fire increased the mobility and export of major elements from the soils to the stream. It also shifted the vegetation-related contribution to the elemental fluxes at the watershed outlet from long-term (seasonal) to short-term (daily to monthly). (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
The objective of this study is to evaluate the ability of a European chemistry transport model, `CHIMERE' driven by the US meteorological model MM5, in simulating aerosol concentrations dust, PM10 and black carbon (BC)] over the Indian region. An evaluation of a meteorological event (dust storm); impact of change in soil-related parameters and meteorological input grid resolution on these aerosol concentrations has been performed. Dust storm simulation over Indo-Gangetic basin indicates ability of the model to capture dust storm events. Measured (AERONET data) and simulated parameters such as aerosol optical depth (AOD) and Angstrom exponent are used to evaluate the performance of the model to capture the dust storm event. A sensitivity study is performed to investigate the impact of change in soil characteristics (thickness of the soil layer in contact with air, volumetric water, and air content of the soil) and meteorological input grid resolution on the aerosol (dust, PM10, BC) distribution. Results show that soil parameters and meteorological input grid resolution have an important impact on spatial distribution of aerosol (dust, PM10, BC) concentrations.
Resumo:
The 2004 earthquake left several traces of coseismic land deformation and tsunami deposits, both on the islands along the plate boundary and distant shores of the Indian Ocean rim countries. Researchers are now exploring these sites to develop a chronology of past events. Where the coastal regions are also inundated by storm surges, there is an additional challenge to discriminate between the deposits formed by these two processes. Paleo-tsunami research relies largely on finding deposits where preservation potential is high and storm surge origin can be excluded. During the past decade of our work along the Andaman and Nicobar Islands and the east coast of India, we have observed that the 2004 tsunami deposits are best preserved in lagoons, inland streams and also on elevated terraces. Chronological evidence for older events obtained from such sites is better correlated with those from Thailand, Sri Lanka and Indonesia, reiterating their usefulness in tsunami geology studies. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Storage of water within a river basin is often estimated by analyzing recession flow curves as it cannot be `instantly' estimated with the aid of available technologies. In this study we explicitly deal with the issue of estimation of `drainable' storage, which is equal to the area under the `complete' recession flow curve (i.e. a discharge vs. time curve where discharge continuously decreases till it approaches zero). But a major challenge in this regard is that recession curves are rarely `complete' due to short inter-storm time intervals. Therefore, it is essential to analyze and model recession flows meaningfully. We adopt the wellknown Brutsaert and Nieber analytical method that expresses time derivative of discharge (dQ/dt) as a power law function of Q : -dQ/dt = kQ(alpha). However, the problem with dQ/dt-Q analysis is that it is not suitable for late recession flows. Traditional studies often compute alpha considering early recession flows and assume that its value is constant for the whole recession event. But this approach gives unrealistic results when alpha >= 2, a common case. We address this issue here by using the recently proposed geomorphological recession flow model (GRFM) that exploits the dynamics of active drainage networks. According to the model, alpha is close to 2 for early recession flows and 0 for late recession flows. We then derive a simple expression for drainable storage in terms the power law coefficient k, obtained by considering early recession flows only, and basin area. Using 121 complete recession curves from 27 USGS basins we show that predicted drainable storage matches well with observed drainable storage, indicating that the model can also reliably estimate drainable storage for `incomplete' recession events to address many challenges related to water resources. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Contenido: Letras cumple veinte años -- A, El cuento rioplatense del periodo neoclásico (1700-1830) / Pedro Luis Barcia -- Luces y sombras en la música española del siglo XVIII / Juan Pablo Bardin – Un secreto a voces: Borges-Rimbaud / Marta Vanbiesem de Burbridge -- José Cardiel, Gonzalo de Doblas. Percepciones de América y heterogeneidad en el siglo XVIII / Roxana Gardes de Fernández – La segunda vida de Anita Ozores / Verónica Zumárraga -- El binarismo simétrico como operador del humor en II servitore di due padroni de Carlo Goldoni / Daniel Capano – La casa de Bulemann de Theodor Storm: estrategias narrativas para una intriga de la degradación / Adriana C. Cid – Conradino de Suabia en un poema de Aleardi / Dolores de Durañona y Vedia – Imágenes, concepción y escritura del cuerpo en la obra de Balzac / Ana María Llurba – Reseñas bibliográficas
Resumo:
本文讨论了一种地球磁层的亚暴机制。当行星际磁场有大的南向分量时,磁层的位形可由基本闭式转变为开式。磁鞘中的阿尔文波可以携带超过10~(18)尔格/秒的能流传入磁层尾部,并将能量耗散于等离子体片中。等离子体片中的粒子被加热和加速后,注入近地空间,产生环电流和极区亚暴。计算了剪切流场中阿尔文波的传播过程,以及磁层中阿尔文波的耗散。将本文的结算与[4]中的结果合在一起,可以说明当行星际磁场转向南时,容易发生地球磁层亚暴,但这两者并非一一对应的关系,行星际磁场没有南向分量时也可以发生地球磁层亚暴。
Resumo:
The center of low pressure of a tropical disturbance which moved northward in the Gulf of Mexico, reached land between Panama City and Port St. Joe, Florida, on September 20, 1969. This system was nearly stationary for 48 hours producing heavy rainfall in the Quincy-Havana area, 70-80 miles northeast of the center. Rainfall associated with the tropical disturbance exceeded 20 inches over a part of Gadsden County, Florida, during September 20 through 23, 1969, and the maximum rainfall of record occurred at Quincy with 10.87 inches during a 6-hour period on September 21. The 48-hour maximum of 17.71 inches exceeded the 1 in 100-year probability of 16 inches for a 7-day period. The previous maximum rainfall of record at Quincy (more than 12 inches) was on September 14-15, 1924. The characteristics of this historical storm were similar in path and effect to the September 1969 tropical disturbance. Peak runoff from a 1.4-square mile area near Midway, Florida, was 1,540 cfs (cubic feet per second) per square mile. A peak discharge of 45,600 cfs on September 22 at the gaging station on the Little River near Quincy exceeded the previous peak of 25,400 cfs which occurred on December 4, 1964. The peak discharge of 89,400 cfs at Ochlockonee River near Bloxham exceeded the April 1948 peak of 50,200 cfs, which was the previous maximum of record, by 1.8 times. Many flood-measurement sites had peak discharges in excess of that of a 50-year flood. Nearly $200,000 was spent on emergency repairs to roads. An additional $520,000 in contractual work was required to replace four bridges that were destroyed. Agricultural losses were estimated at $1,000,000. (44 page document)
Resumo:
A summary is presented of research conducted on beach erosion associated with extreme storms and sea level rise. These results were developed by the author and graduate students under sponsorship of the University of Delaware Sea Grant Program. Various shoreline response problems of engineering interest are examined. The basis for the approach is a monotonic equilibrium profile of the form h = Ax2 /3 in which h is water depth at a distance x from the shoreline and A is a scale parameter depending primarily on sediment characteristics and secondarily on wave characteristics. This form is shown to be consistent with uniform wave energy dissipation per unit volume. The dependency of A on sediment size is quantified through laboratory and field data. Quasi-static beach response is examined to represent the effect of sea level rise. Cases considered include natural and seawalled profiles. To represent response to storms of realistic durations, a model is proposed in which the offshore transport is proportional to the "excess" energy dissipation per unit volume. The single rate constant in this model was evaluated based on large scale wave tank tests and confirmed with Hurricane Eloise pre- and post-storm surveys. It is shown that most hurricanes only cause 10% to 25% of the erosion potential associated with the peak storm tide and wave conditions. Additional applications include profile response employing a fairly realistic breaking model in which longshore bars are formed and long-term (500 years) Monte Carlo simulation including the contributions due to sea level rise and random storm occurrences. (PDF has 67 pages.)
Resumo:
The effects of potential sea level rise on the shoreline and shore environment have been briefly examined by considering the interactions between sea level rise and relevant coastal processes. These interactions have been reviewed beginning with a discussion of the need to reanalyze previous estimates of eustatic sea level rise and compaction effects in water level measurement. This is followed by considerations on sea level effects on coastal and estuarine tidal ranges, storm surge and water level response, and interaction with natural and constructed shoreline features. The desirability to reevaluate the well known Bruun Rule for estimating shoreline recession has been noted. The mechanics of ground and surface water intrusion with reference to sea level rise are then reviewed. This is followed by sedimentary processes in the estuaries including wetland response. Finally comments are included on some probable effects of sea level rise on coastal ecosystems. These interactions are complex and lead to shoreline evolution (under a sea level rise) which is highly site-specific. Models which determine shoreline change on the basis of inundation of terrestrial topography without considering relevant coastal processes are likely to lead to erroneous shoreline scenarios, particularly where the shoreline is composed of erodible sedimentary material. With some exceptions, present day knowledge of shoreline response to hydrodynamic forcing is inadequate for long-term quantitative predictions. A series of interrelated basic and applied research issues must be addressed in the coming decades to determine shoreline response to sea level change with an acceptable degree of confidence. (PDF contains 189 pages.)
Resumo:
Floods occurred on streams in the vicinity of Perry, Taylor County, Florida, on June 9, 1957, as a result of heavy rains from atropical disturbance. Serious flooding occurred in Perry along Spring and Pimple creeks as outlined by the shaded area in figure 1, requiring the evacuation of about ZOO families from the lowland area. No loss of life was reported. The damages to residential and commercial properties were estimated at several million dollars. Most of the damage was confined to residential areas (fig. 2); however, several stores in the area were damaged by flood waters (fig. 3). This report presents data pertaining to the rainfall accompanying this storm and peak flows of Spring and Pimple creeks in Perry. It contains flood elevations at several points, and peak discharges of the two creeks flowing through Perry. The report also contains a discussion of the rainfall associated with the flood and a description of the general features of the flood. (PDF contains 16 pages.)
Resumo:
A post-Agnes study that emphasized environmental factors was carried out on the Patuxent River estuary with weekly sampling at eight stations from 28 June t o 30 August 1972. Spatial and temporal changes in the distribution of many factors , e.g., salinity , dissolved oxygen, seston, particulate carbon and nitrogen, inorganic and organic fractions of dissolved nitrogen and phosphorus, and chlorophyll a were studied and compared t o extensive earlier records. Patterns shown by the present data were compared especially with a local heavy storm that occurred in the Patuxent drainage basin during July 1969. Estimates were made of the amounts of material contributed via upland drainage. A first approximation indicated that 14.8 x l0 (3) metric tons of seston were contributed t o the head of the estuary between 21 and 24 June. (PDF contains 46 pages)
Resumo:
Hurricane Isabel made landfall as a Category 2 Hurricane on 18 September 2003, on the North Carolina Outer Banks between Cape Lookout and Cape Hatteras, then coursed northwestward through Pamlico Sound and west of Chesapeake Bay where it downgraded to a tropical storm. Wind damage on the west and southwest shores of Pamlico Sound and the western shore of Chesapeake Bay was moderate, but major damage resulted from the storm tide. The NOAA, National Ocean Service, National Centers for Coastal Ocean Sciences, Center for Coastal Fisheries and Habitat Research at Beaufort, North Carolina and the Center for Coastal Environmental Health and Biomedical Research Branch at Oxford, Maryland have hurricane preparedness plans in place. These plans call for tropical storms and hurricanes to be tracked carefully through NOAA National Weather Service (NWS) watches, warnings, and advisories. When a hurricane watch changes to a hurricane warning for the areas of Beaufort or Oxford, documented hurricane preparation plans are activated. Isabel exacted some wind damage at both Beaufort and Oxford. Storm tide caused damage at Oxford, where area-wide flooding isolated the laboratory for many hours. Storm tide also caused damage at Beaufort. Because of their geographic locations on or near the open ocean (Beaufort) or on or near large estuaries (Beaufort and Oxford), storm tide poses a major threat to these NOAA facilities and the safety of federal employees. Damage from storm surge and windblown water depends on the track and intensity of a storm. One tool used to predict storm surge is the Sea, Lake, and Overland Surges from Hurricanes (SLOSH) model of the NWS, which provides valuable surge forecasts that aid in hurricane preparation.
Resumo:
Almost all extreme events lasting less than several weeks that significantly impact ecosystems are weather related. This review examines the response of estuarine systems to intense short-term perturbations caused by major weather events such as hurricanes. Current knowledge concerning these effects is limited to relatively few studies where hurricanes and storms impacted estuaries with established environmental monitoring programs. Freshwater inputs associated with these storms were found to initially result in increased primary productivity. When hydrographic conditions are favorable, bacterial consumption of organic matter produced by the phytoplankton blooms and deposited during the initial runoff event can contribute to significant oxygen deficits during subsequent warmer periods. Salinity stress and habitat destruction associated with freshwater inputs, as well as anoxia, adversely affect benthic populations and fish. In contrast, mobile invertebrate species such as shrimp, which have a short life cycle and the ability to migrate during the runoff event, initially benefit from the increased primary productivity and decreased abundance of fish predators. Events studied so far indicate that estuaries rebound in one to three years following major short-term perturbations. However, repeated storm events without sufficient recovery time may cause a fundamental shift in ecosystem structure (Scavia et al. 2002). This is a scenario consistent with the predicted increase in hurricanes for the east coast of the United States. More work on the response of individual species to these stresses is needed so management of commercial resources can be adjusted to allow sufficient recovery time for affected populations.
Resumo:
Executive Summary: Observations show that warming of the climate is unequivocal. The global warming observed over the past 50 years is due primarily to human-induced emissions of heat-trapping gases. These emissions come mainly from the burning of fossil fuels (coal, oil, and gas), with important contributions from the clearing of forests, agricultural practices, and other activities. Warming over this century is projected to be considerably greater than over the last century. The global average temperature since 1900 has risen by about 1.5ºF. By 2100, it is projected to rise another 2 to 11.5ºF. The U.S. average temperature has risen by a comparable amount and is very likely to rise more than the global average over this century, with some variation from place to place. Several factors will determine future temperature increases. Increases at the lower end of this range are more likely if global heat-trapping gas emissions are cut substantially. If emissions continue to rise at or near current rates, temperature increases are more likely to be near the upper end of the range. Volcanic eruptions or other natural variations could temporarily counteract some of the human-induced warming, slowing the rise in global temperature, but these effects would only last a few years. Reducing emissions of carbon dioxide would lessen warming over this century and beyond. Sizable early cuts in emissions would significantly reduce the pace and the overall amount of climate change. Earlier cuts in emissions would have a greater effect in reducing climate change than comparable reductions made later. In addition, reducing emissions of some shorter-lived heat-trapping gases, such as methane, and some types of particles, such as soot, would begin to reduce warming within weeks to decades. Climate-related changes have already been observed globally and in the United States. These include increases in air and water temperatures, reduced frost days, increased frequency and intensity of heavy downpours, a rise in sea level, and reduced snow cover, glaciers, permafrost, and sea ice. A longer ice-free period on lakes and rivers, lengthening of the growing season, and increased water vapor in the atmosphere have also been observed. Over the past 30 years, temperatures have risen faster in winter than in any other season, with average winter temperatures in the Midwest and northern Great Plains increasing more than 7ºF. Some of the changes have been faster than previous assessments had suggested. These climate-related changes are expected to continue while new ones develop. Likely future changes for the United States and surrounding coastal waters include more intense hurricanes with related increases in wind, rain, and storm surges (but not necessarily an increase in the number of these storms that make landfall), as well as drier conditions in the Southwest and Caribbean. These changes will affect human health, water supply, agriculture, coastal areas, and many other aspects of society and the natural environment. This report synthesizes information from a wide variety of scientific assessments (see page 7) and recently published research to summarize what is known about the observed and projected consequences of climate change on the United States. It combines analysis of impacts on various sectors such as energy, water, and transportation at the national level with an assessment of key impacts on specific regions of the United States. For example, sea-level rise will increase risks of erosion, storm surge damage, and flooding for coastal communities, especially in the Southeast and parts of Alaska. Reduced snowpack and earlier snow melt will alter the timing and amount of water supplies, posing significant challenges for water resource management in the West. (PDF contains 196 pages)
Resumo:
This report documents abundance and cover for selected elements of the benthic coral reef assemblage at the site of the 1984 grounding of the M/V Wellwood on Molasses Reef, Florida Keys. The purpose of the effort was to establish a pre-construction baseline before the installation of reef modules at the site. The installation process is intended to stabilize fractured substrates that were recently exposed by storm impacts, and to provide three-dimensional relief in order to enhance reef community recovery. It is hoped that the restoration effort will result in a biological assemblage with the character of the transition community that would exist there had the incident not occurred. To date, the assemblage has developed the character of a comparatively featureless hard ground similar in composition to hard ground areas and transition zones surrounding the grounding site. These data will allow scientists and resource managers to better track the trajectory of recovery following the installation of modules. Direct counts of scleractinian and gorgonian corals, hydrocorals of the genus Millepora, and zoanthids of the genus Palythoa were made in three areas within and around the grounding site. The site is poorly developed with respect to scleractinian colony size and cover compared to surrounding areas. Key scleractinian species necessary for the development of topographic relief in the area denuded by the grounding are not well represented in the current community. Though gorgonian cover and richness is similar in all study areas, gorgonian community recovery in the damaged area is not complete. Unlike surrounding areas, one species, Pseudopterogorgia americana, accounts for over half of all corals at the grounding site, over 80% of all gorgonians, and nearly all the coral cover. Based on these findings and other observations made in the 18 years since the grounding, recommendations are made that should be considered in the course of human intervention targeted at stabilizing and enhancing the site. (PDF contains 24 pages.)