934 resultados para static computer simulation
Resumo:
Aquest projecte conté l'estudi de la comunicació entre quatre Centres de Processament de Dades (CPD) per via WAN. L'estudi consisteix en simular aquestes comunicacions en un entorn de proves físic i també en entorn de proves virtual on s'han extret resultats dels protocols de seguretat, d'enrutament, a més dels temps de resposta i limitacions dels equips físics i virtuals.
Resumo:
L'objecte del projecte consisteix en investigar les capacitats del programari dedinàmica de fluids computacional FLUENT per simular processos transitoris de combustióquan es cremen sòlids. Com el programari FLUENT no incorpora cap mòdul de combustióde sòlids prims, s'hauran de realitzar les funcions d'usuari adients per tal d'incorporar lesequacions i les condicions de contorns que són rellevants en aquests tipus de problemes. Elmodel resultant es validarà amb dades experimentals per a la combustió de fulls decel•lulosa en flames bidimensionals. També es durà a terme una anàlisi de sensibilitat de lasolució variant els paràmetres del model. En funció dels resultats de la validació es durà aterme una extensió del model per a situacions tridimensionals
Resumo:
L’objectiu principal és presentar un nou prototipus d’eina per al disseny de les plantes de tractament d’aigües residuals utilitzant models mecànics dinàmics quantificant la incertesa
Resumo:
El present treball pretén modelitzar i simular el motor d’inducció trifàsic en règim transitori amb PSIM 6.0 Demo(la versió del programa que s’utilitza actualment a l’Escola Politècnica Superior de la UdG), però també s’estudia el model en règim permanent, per tal de comparar a nivell teòric els resultats dels dos règims. Primer cal entendre i implementar el model del motor d’inducció, i així obtenir l'esquema equivalent en règim transitori, per després poder-lo simular. Abans de dur a terme la simulació, cal obtenir els paràmetres del circuit equivalent del motor real per introduir-los al programa informàtic, amb la finalitat de tenir precisió en les respostes. Aquests valors s’obtindran mitjançant assajos necessaris al laboratori. Posteriorment, es fan simulacions i pràctiques reals amb el motor treballen en diferents condicions per veure el seu comportament, i així poder comparar els resultats de la simulació amb els valors reals. També s’implementa un estudi de la influencia dels paràmetres interns en el funcionament del motor. Així es podrà visualitzar i comparar les respostes de diferents variables en cadascunes de les simulacions que es duguin a terme. Finalment, seria interessant la introducció de la màquina d’inducció trifàsica actuant com a generador en la simulació.Aquest és un estudi en el qual se simula la màquina d'inducció trifàsic en règim transitori i en règim permanent mitjançant l'ús del PSIM, que és el programa informàtic de simulació
Resumo:
Background: Excessive exposure to solar Ultra-Violet (UV) light is the main cause of most skin cancers in humans. Factors such as the increase of solar irradiation at ground level (anthropic pollution), the rise in standard of living (vacation in sunny areas), and (mostly) the development of outdoor activities have contributed to increase exposure. Thus, unsurprisingly, incidence of skin cancers has increased over the last decades more than that of any other cancer. Melanoma is the most lethal cutaneous cancer, while cutaneous carcinomas are the most common cancer type worldwide. UV exposure depends on environmental as well as individual factors related to activity. The influence of individual factors on exposure among building workers was investigated in a previous study. Posture and orientation were found to account for at least 38% of the total variance of relative individual exposure. A high variance of short-term exposure was observed between different body locations, indicating the occurrence of intense, subacute exposures. It was also found that effective short-term exposure ranged between 0 and 200% of ambient irradiation, suggesting that ambient irradiation is a poor predictor of effective exposure. Various dosimetric techniques enable to assess individual effective exposure, but dosimetric measurements remain tedious and tend to be situation-specific. As a matter of facts, individual factors (exposure time, body posture and orientation in the sun) often limit the extrapolation of exposure results to similar activities conducted in other conditions. Objective: The research presented in this paper aims at developing and validating a predictive tool of effective individual exposure to solar UV. Methods: Existing computer graphic techniques (3D rendering) were adapted to reflect solar exposure conditions and calculate short-term anatomical doses. A numerical model, represented as a 3D triangular mesh, is used to represent the exposed body. The amount of solar energy received by each "triangle is calculated, taking into account irradiation intensity, incidence angle and possible shadowing from other body parts. The model take into account the three components of the solar irradiation (direct, diffuse and albedo) as well as the orientation and posture of the body. Field measurements were carried out using a forensic mannequin at the Payerne MeteoSwiss station. Short-term dosimetric measurements were performed in 7 anatomical locations for 5 body postures. Field results were compared to the model prediction obtained from the numerical model. Results: The best match between prediction and measurements was obtained for upper body parts such as shoulders (Ratio Modelled/Measured; Mean = 1.21, SD = 0.34) and neck (Mean = 0.81, SD = 0.32). Small curved body parts such as forehead (Mean = 6.48, SD = 9.61) exhibited a lower matching. The prediction is less accurate for complex postures such as kneeling (Mean = 4.13, SD = 8.38) compared to standing up (Mean = 0.85, SD = 0.48). The values obtained from the dosimeters and the ones computed from the model are globally consistent. Conclusion: Although further development and validation are required, these results suggest that effective exposure could be predicted for a given activity (work or leisure) in various ambient irradiation conditions. Using a generic modelling approach is of high interest in terms of implementation costs as well as predictive and retrospective capabilities.
Resumo:
L’objecte d’aquest treball és fer una posta a punt d’un programa de simulació. En el nostre cas el programa s’anomena HvacCad. A partir d’aquest programa trobarem les càrregues tèrmiques d’un edifici de vivendes exemple tant per a l’ hivern com a l’estiu. Paral•lelament a aquests càlculs farem els mateixos però amb un full de càlcul convencional, anomenat Aguilar, així podrem comparar els resultats obtinguts. No realitzarem el càlcul de la instal•lació de climatització, només trobarem la potència màxima dels aparells
Resumo:
We developed a procedure that combines three complementary computational methodologies to improve the theoretical description of the electronic structure of nickel oxide. The starting point is a Car-Parrinello molecular dynamics simulation to incorporate vibrorotational degrees of freedom into the material model. By means ofcomplete active space self-consistent field second-order perturbation theory (CASPT2) calculations on embedded clusters extracted from the resulting trajectory, we describe localized spectroscopic phenomena on NiO with an efficient treatment of electron correlation. The inclusion of thermal motion into the theoretical description allowsus to study electronic transitions that, otherwise, would be dipole forbidden in the ideal structure and results in a natural reproduction of the band broadening. Moreover, we improved the embedded cluster model by incorporating self-consistently at the complete active space self-consistent field (CASSCF) level a discrete (or direct) reaction field (DRF) in the cluster surroundings. The DRF approach offers an efficient treatment ofelectric response effects of the crystalline embedding to the electronic transitions localized in the cluster. We offer accurate theoretical estimates of the absorption spectrum and the density of states around the Fermi level of NiO, and a comprehensive explanation of the source of the broadening and the relaxation of the charge transferstates due to the adaptation of the environment
Resumo:
We studied the noctule bat (Nyctalus noctula), in which the mitochondrial F(ST) is about 10 times that revealed by nuclear markers, to address two questions. We first verified whether random dispersal of one sex is compatible with highly contrasted mitochondrial and nuclear population structures. Using computer simulations, we then assessed the power of multilocus population differentiation tests when the expected population structure departs only slightly from panmixia. Using an island model with sex-specific demographic parameters, we found that random male dispersal is consistent with the population structure observed in the noctule. However, other parameter combinations are also compatible with the data. We computed the minimum sex bias in dispersal (at least 69% of the dispersing individuals are males), a result that would not be available if we had used more classical population genetic models. The power of multilocus population differentiation tests was unexpectedly high, the tests being significant in almost 100% of the replicates, although the observed population structure infered from nuclear markers was extremely low (F(ST) = 0.6%).
Resumo:
In the context of Systems Biology, computer simulations of gene regulatory networks provide a powerful tool to validate hypotheses and to explore possible system behaviors. Nevertheless, modeling a system poses some challenges of its own: especially the step of model calibration is often difficult due to insufficient data. For example when considering developmental systems, mostly qualitative data describing the developmental trajectory is available while common calibration techniques rely on high-resolution quantitative data. Focusing on the calibration of differential equation models for developmental systems, this study investigates different approaches to utilize the available data to overcome these difficulties. More specifically, the fact that developmental processes are hierarchically organized is exploited to increase convergence rates of the calibration process as well as to save computation time. Using a gene regulatory network model for stem cell homeostasis in Arabidopsis thaliana the performance of the different investigated approaches is evaluated, documenting considerable gains provided by the proposed hierarchical approach.
A variational approach for calculating Franck-Condon factors including mode-mode anharmonic coupling
Resumo:
We have implemented our new procedure for computing Franck-Condon factors utilizing vibrational configuration interaction based on a vibrational self-consistent field reference. Both Duschinsky rotations and anharmonic three-mode coupling are taken into account. Simulations of the first ionization band of Cl O2 and C4 H4 O (furan) using up to quadruple excitations in treating anharmonicity are reported and analyzed. A developer version of the MIDASCPP code was employed to obtain the required anharmonic vibrational integrals and transition frequencies
Resumo:
Gene duplication and neofunctionalization are known to be important processes in the evolution of phenotypic complexity. They account for important evolutionary novelties that confer ecological adaptation, such as the major histocompatibility complex (MHC), a multigene family crucial to the vertebrate immune system. In birds, two MHC class II β (MHCIIβ) exon 3 lineages have been recently characterized, and two hypotheses for the evolutionary history of MHCIIβ lineages were proposed. These lineages could have arisen either by 1) an ancient duplication and subsequent divergence of one paralog or by 2) recent parallel duplications followed by functional convergence. Here, we compiled a data set consisting of 63 MHCIIβ exon 3 sequences from six avian orders to distinguish between these hypotheses and to understand the role of selection in the divergent evolution of the two avian MHCIIβ lineages. Based on phylogenetic reconstructions and simulations, we show that a unique duplication event preceding the major avian radiations gave rise to two ancestral MHCIIβ lineages that were each likely lost once later during avian evolution. Maximum likelihood estimation shows that following the ancestral duplication, positive selection drove a radical shift from basic to acidic amino acid composition of a protein domain facing the α-chain in the MHCII α β-heterodimer. Structural analyses of the MHCII α β-heterodimer highlight that three of these residues are potentially involved in direct interactions with the α-chain, suggesting that the shift following duplication may have been accompanied by coevolution of the interacting α- and β-chains. These results provide new insights into the long-term evolutionary relationships among avian MHC genes and open interesting perspectives for comparative and population genomic studies of avian MHC evolution.
Resumo:
Bimodal dispersal probability distributions with characteristic distances differing by several orders of magnitude have been derived and favorably compared to observations by Nathan [Nature (London) 418, 409 (2002)]. For such bimodal kernels, we show that two-dimensional molecular dynamics computer simulations are unable to yield accurate front speeds. Analytically, the usual continuous-space random walks (CSRWs) are applied to two dimensions. We also introduce discrete-space random walks and use them to check the CSRW results (because of the inefficiency of the numerical simulations). The physical results reported are shown to predict front speeds high enough to possibly explain Reid's paradox of rapid tree migration. We also show that, for a time-ordered evolution equation, fronts are always slower in two dimensions than in one dimension and that this difference is important both for unimodal and for bimodal kernels
Resumo:
AIMS: Brugada syndrome (BrS) is characterized by arrhythmias leading to sudden cardiac death. BrS is caused, in part, by mutations in the SCN5A gene, which encodes the sodium channel alpha-subunit Na(v)1.5. Here, we aimed to characterize the biophysical properties and consequences of a novel BrS SCN5A mutation. METHODS AND RESULTS: SCN5A was screened for mutations in a male patient with type-1 BrS pattern ECG. Wild-type (WT) and mutant Na(v)1.5 channels were expressed in HEK293 cells. Sodium currents (I(Na)) were analysed using the whole-cell patch-clamp technique at 37 degrees C. The electrophysiological effects of the mutation were simulated using the Luo-Rudy model, into which the transient outward current (I(to)) was incorporated. A new mutation (C1850S) was identified in the Na(v)1.5 C-terminal domain. In HEK293 cells, mutant I(Na) density was decreased by 62% at -20 mV. Inactivation of mutant I(Na) was accelerated in a voltage-dependent manner and the steady-state inactivation curve was shifted by 11.6 mV towards negative potentials. No change was observed regarding activation characteristics. Altogether, these biophysical alterations decreased the availability of I(Na). In the simulations, the I(to) density necessary to precipitate repolarization differed minimally between the two genotypes. In contrast, the mutation greatly affected conduction across a structural heterogeneity and precipitated conduction block. CONCLUSION: Our data confirm that mutations of the C-terminal domain of Na(v)1.5 alter the inactivation of the channel and support the notion that conduction alterations may play a significant role in the pathogenesis of BrS.
Resumo:
Biochemical systems are commonly modelled by systems of ordinary differential equations (ODEs). A particular class of such models called S-systems have recently gained popularity in biochemical system modelling. The parameters of an S-system are usually estimated from time-course profiles. However, finding these estimates is a difficult computational problem. Moreover, although several methods have been recently proposed to solve this problem for ideal profiles, relatively little progress has been reported for noisy profiles. We describe a special feature of a Newton-flow optimisation problem associated with S-system parameter estimation. This enables us to significantly reduce the search space, and also lends itself to parameter estimation for noisy data. We illustrate the applicability of our method by applying it to noisy time-course data synthetically produced from previously published 4- and 30-dimensional S-systems. In addition, we propose an extension of our method that allows the detection of network topologies for small S-systems. We introduce a new method for estimating S-system parameters from time-course profiles. We show that the performance of this method compares favorably with competing methods for ideal profiles, and that it also allows the determination of parameters for noisy profiles.
Resumo:
BACKGROUND: Various centralised mammography screening programmes have shown to reduce breast cancer mortality at reasonable costs. However, mammography screening is not necessarily cost-effective in every situation. Opportunistic screening, the predominant screening modality in several European countries, may under certain circumstances be a cost-effective alternative. In this study, we compared the cost-effectiveness of both screening modalities in Switzerland. METHODS: Using micro-simulation modelling, we predicted the effects and costs of biennial mammography screening for 50-69 years old women between 1999 and 2020, in the Swiss female population aged 30-70 in 1999. A sensitivity analysis on the test sensitivity of opportunistic screening was performed. RESULTS: Organised mammography screening with an 80% participation rate yielded a breast cancer mortality reduction of 13%. Twenty years after the start of screening, the predicted annual breast cancer mortality was 25% lower than in a situation without screening. The 3% discounted cost-effectiveness ratio of organised mammography screening was euro11,512 per life year gained. Opportunistic screening with a similar participation rate was comparably effective, but at twice the costs: euro22,671-24,707 per life year gained. This was mainly related to the high costs of opportunistic mammography and frequent use of imaging diagnostics in combination with an opportunistic mammogram. CONCLUSION: Although data on the performance of opportunistic screening are limited, both opportunistic and organised mammography screening seem effective in reducing breast cancer mortality in Switzerland. However, for opportunistic screening to become equally cost-effective as organised screening, costs and use of additional diagnostics should be reduced.