996 resultados para species cultivation
Resumo:
Seven hardwood species were tested as underplants under Pinus elliottii plantations on the coastal lowlands of south-east Queensland. The species tested were: Flindersia brayleyana (F. Muell) (Queensland maple), F. australis (R. Br.), (crow's ash), Swietenia macrophylla (King) (American mahogany), Grevillea robusta (A. cunn) (southern silky oak), Elaeocarpus grandis (F. Muell) (silver quandong), F. ifflaiana (F. Meull) (Cairns hickory) and Ceratopetalum apetalum (D. Don) (coachwood). Most species (except E. grandis) established successfully but slowly. Underplants suffered 9-16% mortality during thinning of the overstorey. By 2004 when aged c. 38 years, four underplanted species; F. brayleyana, S. macrophylla, F. ifflaiana and E. grandis, had attained predominant heights of 20 m and mean diameter at breast height of 25 cm or better. The presence of underplants increased total site productivity by up to 23% and did not have any detrimental effect on the development of the overwood.This experiment has demonstrated that some rainforest species will survive and grow healthily as underplants in exotic pine plantations plus produce small merchantable logs within a 38 year rotation. The results also indicated the importance of correct species selection if an underplanting option is to be pursued as some species have been a complete failure (notably G. robusta).
Resumo:
Melaleuca densispicata Byrnes is an uncommon species with a limited distribution, comprising disjunct populations in inland southern Queensland and northern New South Wales, Australia. It is a dense, woody shrub, 2–4 m in height, which exhibits a marked 'clumping' growth habit. It has thick, papery bark and displays many white flowers during spring or early summer. Although it has long been known to exist, M. densispicata was only formally described in 1984, and very little is currently known about its ecology or specific management requirements. There are only seven known subpopulations of the species across its range. A major population at the western limit of its distribution occurs on Currawinya National Park (28°52'S, 144°30'E). Here, it is locally abundant and listed as a noteworthy plant species under the Management Plan (Queensland Parks & Wildlife Service 2001). This study aimed to identify patterns in the distribution of M. densispicata in Currawinya National Park, describe its ecological niche and role, and provide management recommendations for the species within the study area. Recent anecdotal observations of recruitment failure in south-western Queensland (Peter McRae, QPWS, October 2004, pers. comm.; Dick O'Connell, local grazier, July 2005 pers. comm.) caused additional emphasis to be placed on the examination of recruitment and recruitment factors.
Resumo:
The Queensland Department of Primary Industries and Fisheries in collaboration with the Rural Industries Research and Development Corporation and Yuruga Nursery Pty Ltd have been conducting research into the development of five native foliage products. The three species and two cultivars being developed for commercial production are: Grevillea baileyana, Lomatia fraxinifolia, Athertonia diversifolia, Stenocarpus 'Forest Lace' and Stenocarpus 'Forest Gem'. Previous research involved an evaluation of 21 species from which these five were selected based on market comments, post harvest life and ability to grow under a range of climatic conditions. Lomatia fraxinifolia, Grevillea baileyana and Athertonia diversifolia are all native to north Queensland rainforests. Stenocarpus 'Forest Gem' and Stenocarpus 'Forest Lace' are hybrids and have been selected by Yuruga Nursery Pty Ltd. Both Stenocarpus cultivars are protected by Plant Breeders Rights. Current research into the commercial development of these species involves: market research, post harvest trials, field trials and grower training. Two field trials have been established on the Atherton Tablelands, one in the high rainfall zone at Yungaburra and the other in the low rainfall zone west of Mareeba. Field trials will evaluate the effects of fertiliser rates and pruning techniques on yield. Pests and diseases will be identified and appropriate control measures tested on trial plants. Vase life evaluations have also been carried out and the results indicate that the five foliages have exceptional vase life. All five products are being sold on the Australian domestic market in small volumes at this stage; it is anticipated that sales will significantly increase in the coming years. A number of leading exporters have indicated that the foliages may also meet the requirements of export markets. Stenocarpus 'Forest Gem' is similar in appearance to Persoonia longifolia (Barker Bush), which is a bush-picked foliage currently exported from Australia to a number of overseas markets.
Resumo:
Blackwood (Acacia melanoxylon R. Br.) is a valuable leguminous cabinetwood species which is commonly found as a canopy or subcanopy tree in a broad range of mixed-species moist forests on tablelands and coastal escarpments in eastern Australia. This paper reports on the competitive light environment of a commercially valuable multi-species regrowth forest in NW Tasmania, in order to define some of the functional interactions and competitive dynamics of these stands. Comparative observations were made of the internal forest light environment in response to small-gap silvicultural treatments, in a young regenerative mix of three codominant tree species. Light measurements were made during periods of maximum external irradiance of the regrowth Eucalyptus obliqua/A. melanoxylon forest canopy at age 10.5 years. This was at a time of vigourous stand development, 4.5 years following the application of three experimental silvicultural treatments whose effects were observed in comparison with an untreated canopy sample designed as a control. Minimal irradiance was observed within and beneath the dense subcanopy of the native nurse species (Pomaderris apetala) which closely surrounds young blackwood regeneration. Unlike current plantation nurse systems, the dense foliage of the native broadleaved Pomaderris all but eliminated direct side-light and low-angle illumination of the young blackwood, from the beginning of tree establishment. The results demonstrated that retention of these densely stocked native codominants effectively suppressed both size and frequency of blackwood branches on the lower bole, through effective and persistent interception of sunlight. Vigorous young blackwood crowns later overtopped the codominant nurse species, achieving a predictable height of branch-free bole. This competitive outcome offers a valuable tool for management of blackwood crown dynamics, stem form and branch habit through manipulation of light environment in young native regrowth systems. Results demonstrate that effective self-pruning in the lower bole of blackwood is achieved through a marked reduction in direct and diffuse sunlight incident on the lower crown, notably to less than 10-15% of full sunlight intensity during conditions of maximum insolation. The results also contain insights for the improved design of mixed-species plantation nurse systems using these or functionally similar species' combinations. Based on evidence presented here for native regrowth forest, plantation nurse systems for blackwood will need to achieve 85-90% interception of external side-light during early years of tree development if self-pruning is to emulate the results achieved in the native nurse system.
Resumo:
Site index prediction models are an important aid for forest management and planning activities. This paper introduces a multiple regression model for spatially mapping and comparing site indices for two Pinus species (Pinus elliottii Engelm. and Queensland hybrid, a P. elliottii x Pinus caribaea Morelet hybrid) based on independent variables derived from two major sources: g-ray spectrometry (potassium (K), thorium (Th), and uranium (U)) and a digital elevation model (elevation, slope, curvature, hillshade, flow accumulation, and distance to streams). In addition, interpolated rainfall was tested. Species were coded as a dichotomous dummy variable; interaction effects between species and the g-ray spectrometric and geomorphologic variables were considered. The model explained up to 60% of the variance of site index and the standard error of estimate was 1.9 m. Uranium, elevation, distance to streams, thorium, and flow accumulation significantly correlate to the spatial variation of the site index of both species, and hillshade, curvature, elevation and slope accounted for the extra variability of one species over the other. The predicted site indices varied between 20.0 and 27.3 m for P. elliottii, and between 23.1 and 33.1 m for Queensland hybrid; the advantage of Queensland hybrid over P. elliottii ranged from 1.8 to 6.8 m, with the mean at 4.0 m. This compartment-based prediction and comparison study provides not only an overview of forest productivity of the whole plantation area studied but also a management tool at compartment scale.
Resumo:
Two new species of the endemic Australian stiletto fly genus Laxotela Winterton & Irwin are described and figured. Laxotela elongata sp. nov. is described from Queensland while Laxotela plata sp. nov. is described from south-eastern mainland Australia. Laxotela ornata (Krober) comb. nov. (originally Spatulipalpa Krober) was recently placed as incertae sedis within Therevidae, but is herein transferred to Laxotela. A revised key to Laxotela species is presented.
Resumo:
Two new species are described in each of the closely related genera Nanexila Winterton & Irwin and Taenogera Krober. Nanexila atricauda sp. nov. and Nanexila jimrodmani sp. nov. are described. The phylogenetic placement and diagnostic characteristics of these new species and other species recently transferred to Nanexila are discussed. Taenogera luteola sp. nov. and Taenogera brunnea sp. nov. are distinctive species described from female specimens collected in Queensland. Taenogera is diagnosed in light of these new species and a revised key to species presented.
Resumo:
The stiletto fly subfamily Agapophytinae is diverse and species rich in Australasia, with numerous undescribed species. A new species of Acraspisoides Hill & Winterton, A. monticola sp. nov., is described from females collected in montane localities in eastern Australia. Eight new species of Bonjeania Irwin & Lyneborg are also described, raising the total number of known species to 18. Five new species, B. affinis sp. nov., B. apluda sp. nov., B. bapsis sp. nov., B. webbi sp. nov. and B. zwicki sp. nov., all have a distinctive, forward-protruding head with antennae on a raised tubercle. Two other new species, B. argentea sp. nov. and B. jefferiesi sp. nov., are closely related to B. segnis (White), with very similar shaped male genitalia and body shape. An eighth species, B. lambkinae sp. nov., is closely related to B. clamosis Winterton & Skevington. Bonjeania and Acraspisoides are diagnosed and revised keys to species presented. An unusual new therevid, Vomerina humbug gen. et sp. nov., is also described and figured based on a series of males from New South Wales. This new genus likely represents the sister taxon to Bonjeania.
Resumo:
In tropical forests, natural disturbance creates opportunities for species to claim previously utilized space and resources and is considered an important mechanism in the maintenance of species diversity. However, ecologists have long recognized that disturbance also promotes exotic plant invasions. Cyclones cause extensive defoliation, loss of major branches and multiple tree falls, resulting in a significantly more open canopy and increased light and heat levels in the understorey. The widespread and massive disturbance caused by cyclones provides ideal conditions for rapid recruitment and spread of invasive species. The ecological roles of invasive species in rainforest habitats following such a severe disturbance are poorly understood. Severe category 4 Cyclone Larry crossed the North Queensland coast in March 2006 causing massive disturbance to rainforest habitats from Tully to Cairns and west to the Atherton Tablelands. We established 10 plots in an area extensively damaged by this cyclone near El Arish in North Queensland. On each plot nine 2 × 2 m quadrats were established with three quadrats per plot in each of the following treatments: (i) complete debris removal down to the soil layer, (ii) removal of coarse woody debris only, and (iii) uncleared. We monitored recruitment, growth and mortality of all native and invasive species in the 90 quadrats every 3 months since the cyclone. Here we present the recruitment dynamics of invasive species across the study area in relation to the level of disturbance, the type of quadrat treatment, and the diversity and abundance of the native recruiting flora over the first 12 months post-cyclone. Our results suggest that invasive species will mostly comprise a transient component of the flora in the early stages of the successional response. However, some species may have longer-term effects on the successional trajectory of the rainforest and future forest composition and structure.
Resumo:
Hazard site surveillance is a system for post-border detection of new pest incursions, targeting sites that are considered potentially at high risk of such introductions. Globalisation, increased volumes of containerised freight and competition for space at domestic ports means that goods are increasingly being first opened at premises some distance from the port of entry, thus dispersing risk away from the main inspection point. Hazard site surveillance acts as a backstop to border control to ensure that new incursions are detected sufficiently early to allow the full range of management options, including eradication and containment, to be considered. This is particularly important for some of the more cryptic forest pests whose presence in a forest often is not discovered until populations are already high and the pest is well established. General requirements for a hazard site surveillance program are discussed using a program developed in Brisbane, Australia, in 2006 as a case study. Some early results from the Brisbane program are presented. In total 67 species and 5757 individuals of wood-boring beetles have been trapped and identified during the program to date. Scolytines are the most abundant taxa, making up 83% of the catch. No new exotics have been trapped but 19 of the species and 60% of all specimens caught are exotics that are already established in Australia.
Resumo:
The response of grasslands to disturbance varies with the nature of the disturbance and the productivity of the landscape. In highly productive grasslands, competitive exclusion often results in decreased species richness and grazing may allow more species to coexist. Once widespread, grasslands dominated by Dichanthium sericeum (Queensland bluegrass) and Astrebla spp. (Mitchell grass) occur on fertile plains but have been reduced in extent by cultivation. We tested the effects of exclusion of livestock grazing on these grasslands by comparing the floristic composition of sites in a nature reserve with an adjacent stock reserve. In addition, sites that had been cultivated within the nature reserve were compared with those where grazing but no cultivation had occurred. To partition the effects of temporal variation from spatial variation we sampled sites in three different years (1998, 2002 and 2004). Some 194 taxa were recorded at the nature reserve and surrounding stock routes. Sampling time, the occurrence of past cultivation and livestock grazing all influenced species composition. Species richness varied greatly between sampling periods relating to highly variable rainfall and water availability on heavy clay soils. Native species richness was significantly lower at previously cultivated sites (13-22 years after cultivation), but was not significantly influenced by grazing exclusion. After 8 years it appears that reintroducing disturbance in the form of livestock grazing is not necessary to maintain plant species richness in the reserve. The highly variable climate (e.g. droughts) probably plays an important role in the coexistence of species by negating competitive exclusion and allowing interstitial species to persist.
Resumo:
The Queensland Great Barrier Reef line fishery in Australia is regulated via a range of input and output controls including minimum size limits, daily catch limits and commercial catch quotas. As a result of these measures a substantial proportion of the catch is released or discarded. The fate of these released fish is uncertain, but hook-related mortality can potentially be decreased by using hooks that reduce the rates of injury, bleeding and deep hooking. There is also the potential to reduce the capture of non-target species though gear selectivity. A total of 1053 individual fish representing five target species and three non-target species were caught using six hook types including three hook patterns (non-offset circle, J and offset circle), each in two sizes (small 4/0 or 5/0 and large 8/0). Catch rates for each of the hook patterns and sizes varied between species with no consistent results for target or non-target species. When data for all of the fish species were aggregated there was a trend for larger hooks, J hooks and offset circle hooks to cause a greater number of injuries. Using larger hooks was more likely to result in bleeding, although this trend was not statistically significant. Larger hooks were also more likely to foul-hook fish or hook fish in the eye. There was a reduction in the rates of injuries and bleeding for both target and non-target species when using the smaller hook sizes. For a number of species included in our study the incidence of deep hooking decreased when using non-offset circle hooks, however, these results were not consistent for all species. Our results highlight the variability in hook performance across a range of tropical demersal finfish species. The most obvious conservation benefits for both target and non-target species arise from using smaller sized hooks and non-offset circle hooks. Fishers should be encouraged to use these hook configurations to reduce the potential for post-release mortality of released fish.
Resumo:
RuvA, along with RuvB, is involved in branch migration of heteroduplex DNA in homologous recombination. The structures of three new crystal forms of RuvA from Mycobacterium tuberculosis (MtRuvA) have been determined. The RuvB-binding domain is cleaved off in one of them. Detailed models of the complexes of octameric RuvA from different species with the Holliday junction have also been constructed. A thorough examination of the structures presented here and those reported earlier brings to light the hitherto unappreciated role of the RuvB-binding domain in determining inter-domain orientation and oligomerization. These structures also permit an exploration of the interspecies variability of structural features such as oligomerization and the conformation of the loop that carries the acidic pin, in terms of amino acid substitutions. These models emphasize the additional role of the RuvB-binding domain in Holliday junction binding. This role along with its role in oligomerization could have important biological implications.
Resumo:
Variability of specific leaf area (SLA) across taxa, sites and crown zones was determined for four sub-tropical hardwood species, Eucalyptus grandis, E. cloeziana, E. argophloia and Corymbia citriodora ssp. variegata, growing in south-eastern Queensland. Mean SLA values were stable amongst those taxa sampled on dry sites but varied markedly between provenances of E. grandis on a moist site. Mean SLA did not vary significantly with crown zone in any of these four sub-tropical eucalypts, which is in contrast to that observed in temperate species, both in Australia and overseas. A provenance of E. cloeziana from a moist coastal site exhibited the largest SLA of all taxa studied.
Resumo:
The majority of Australian weeds are exotic plant species that were intentionally introduced for a variety of horticultural and agricultural purposes. A border weed risk assessment system (WRA) was implemented in 1997 in order to reduce the high economic costs and massive environmental damage associated with introducing serious weeds. We review the behaviour of this system with regard to eight years of data collected from the assessment of species proposed for importation or held within genetic resource centres in Australia. From a taxonomic perspective, species from the Chenopodiaceae and Poaceae were most likely to be rejected and those from the Arecaceae and Flacourtiaceae were most likely to be accepted. Dendrogram analysis and classification and regression tree (TREE) models were also used to analyse the data. The latter revealed that a small subset of the 35 variables assessed was highly associated with the outcome of the original assessment. The TREE model examining all of the data contained just five variables: unintentional human dispersal, congeneric weed, weed elsewhere, tolerates or benefits from mutilation, cultivation or fire, and reproduction by vegetative propagation. It gave the same outcome as the full WRA model for 71% of species. Weed elsewhere was not the first splitting variable in this model, indicating that the WRA has a capacity for capturing species that have no history of weediness. A reduced TREE model (in which human-mediated variables had been removed) contained four variables: broad climate suitability, reproduction in less or than equal to 1 year, self-fertilisation, and tolerates and benefits from mutilation, cultivation or fire. It yielded the same outcome as the full WRA model for 65% of species. Data inconsistencies and the relative importance of questions are discussed, with some recommendations made for improving the use of the system.