937 resultados para spatio-temporal dynamics


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The present study has been initiated to unravel the distribution of trace metals and its geochemical behavior in the Indian EEZ of the Arabian Sea and Bay of Bengal. Trace metal accumulation in aquatic consumers is of interest to ecologists and environmentalists so as to understand the fate and effect of contaminants in the food web dynamics and the biogeochemical cycling of trace metals. It is well established that oceanic distribution of macronutrients such as nitrate, phosphate and silicate provide critical to biological growth and related geochemical processes. In this study it can be inferred, that there is a need for a better understanding of background informations on trace metal concentrations with respect to space and time and their fluctuations in the Arabian Sea and Bay of Bengal zooplankton. Without a sound knowledge on spatio-temporal fluctuations, it will be impossible to differentiate anthropogenic metal inputs from natural background concentrations with a routine biomonitoring programme. Fe, Cu, Zn, Cd & Pb showed a slight enrichment in zooplankton from the Arabian Sea during spring intermonsoon compared to intermonsoon fall. The relative enrichment of Fe, Cu & Zn in zooplankton from the Arabian Sea during intermonsoon spring than intermonsoon fall was due to favourable bioaccumulation factors of these elements during this season. Nevertheless this study can be looked upon as a starting point for further investigations on these biogeochemically important processes, which are vital in addressing the dynamics of productivity of waters.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This study was aimed at to characterize the spatio-temporal trends in the distributional characteristics of various species of nitrogen and phosphorus as well as to elucidate the factors and processes aflecting these nutrients in the dissolved, particulate and sedimentary phases of a river estuarine system. The main area of study is Chalakudy river in Kerala, which is a fresh water system originating from Anamalai hills and ending at Arabian Sea. Its basin is between I00 05 ’ to I00 35’ North latitude and 76” 15 ’ to 760 55’ East longitude. Being a riparian bufler zone, the dynamics of nutrient mobility tend to be more complex and variable in this river-estuarine system.The diflerent species of nitrogen estimated from the filtrate were nitrite-N, nitrateN, ammonia-N, urea-N, total nitrogen and residual nitrogen. The diflerent forms of phosphorus estimated from the filtrate were phosphate-P, total-P and residualP. Pre weighed sediments as well as particulate matter were analysed for quantijying nitrite-N, nitrate-N, ammonia-N and urea-N. Total nitrogen was estimated after digestion with potassium persulfate. Fractionation of phosphorus in sediment/particulate matter was performed by applying sequential extraction procedure. The dijferent forms of phosphorus thus estimated were loosely bound (exchangeable) P, Fe/Al bound P, polyphosphates, Ca bound P and refractory P. Sedimental total P was also measured directly by applying digestion method.The analyses carried out in this bimonthly annual survey have revealed specific information on the latent factors influencing the water quality pattern ofthe river. There was dependence among the chemical components of the river sediment and suspended matter, reflecting the water quality. A period of profound environmental change occurred and changes in various species had been noted in association with seasonal variations in the waterway, especially following enhanced river runoff during the monsoon. The results also successfully represented the distribution trend of nutrients during the rainy as well as dry season. Thus, the information gathered in this work will also be beneficial for those interested or involved in river management, conservation, regulation and policy making in regional and national levels.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The status of fisheries and seasonal variation in fish diversity in the Kodungallur-Azhikode Estuary (KAE) were investigated. Total annual average fish production in the estuary declined significantly to 908.6 t with average yield of 5.4 kg ha-1 day-1, when compared to earlier study; where 2747 t was reported. During the present study, 60 species of finfishes (belonging to 34 finfish families), 6 species of penaeid shrimps, 2 species of palaemonid prawns, 2 species of crabs (4 crustacean families), 6 species of bivalves and 2 species of edible oysters (3 molluscan families) were noticed. Finfishes were the major group that contributed 69.62% of total fishery in the estuary and crustaceans (23.47%), bivalves (6.84%) and oysters (0.07%) also formed good fishery. Many of the fish species in the estuary were observed as threatened (Horabagrus brachysoma, Channa striatus, Channa marulius, Clarias batrachus, Heteropneustes fossilis and Wallago attu). The major fishing gears employed in the estuary were gillnets, cast nets, stake nets, scoop nets, ring nets, traps and Chinese dip nets. Gillnets contributed 45% of the total fish catch. Gillnets also showed highest catch per unit effort (CPUE) of 6.91 kg h -1 followed by cast nets (1.85 kg h -1), Chinese dip nets (3.20 kg h -1), stake nets (3.05 kg h -1), ring nets (1.27 kg h -1), hooks and lines (1.35 kg h -1) and scoop nets (0.92 kg h -1). The study implies that temporal changes in fish landing pattern of the KAE was mainly due to environmental variability, habitat modification and fish migration; under the influence of south-west monsoon and anthropogenic activities in the KAE. Results of the study suggest that spatio-temporal variations in the fish community structure could be an indicator for anthropogenic stress and it should be considered for restoration programmes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The study aims to get deeper insight into the highly extensive system of animal husbandry in the Mahafaly region of southwestern Madagascar. It tries to understand the major drivers for pastoral dynamics, land and resource use along a gradient in altitude and vegetation to consider the area’s high spatial and temporal heterogeneity. The study also analyzes the reproductive performance of local livestock as well as the owners’ culling strategies to determine herd dynamics, opportunities for economic growth, and future potential for rural development. Across seasons, plateau herds from both livestock species covered longer distances (cattle 13.6±3.02 km, goats 12.3±3.48 km) and were found further away from the settlements (cattle 3.1±0.96 km, goats 2.8±0.98 km) than those from the coastal plain (walking_dist: cattle 9.5±3.25 km, goats 9.2±2.57 km; max_dist: cattle 2.6±1.28 km, goats 1.8±0.61 km). Transhumant cattle were detected more vulnerable through limited access to pasture land and water resources compared to local herds. Seasonal water shortage has been confirmed as a key constraint on the plateau while livestock keeping along the coast is more limited by dry season forage availability. However, recent security issues and land use conflicts with local crop farmers are gaining importance and force livestock owners to adapt their traditional grazing management, resulting in spatio-temporal variation of livestock numbers and in the impending risk of local overgrazing and degradation of rangelands. Among the 133 plant species consumed by livestock, 13 were determined of major importance for the animals’ nutrition. The nutritive value and digestibility of the natural forage, as well as its abundance in the coastal zone, substantially decreased over the course of the dry season and emphasized the importance of supplementary forage plants, in particular Euphorbia stenoclada. At the same time, an unsustainable utilization and overexploitation of its wild stocks may raise the pressure on the vegetation and pasture resources within the nearby Tsimanampetsotsa National Park. Age at first parturition was 40.5±0.59 months for cattle and 21.3±0.63 months for goats. Both species showed long parturition intervals (cattle 24.2±0.48 months, goats 12.4±0.30 months), mostly due to the maintenance of poorly performing breeding females within the herds. Reported offspring mortality, however, was low with 2.5% of cattle and 18.8% of goats dying before reaching maturity. The analysis of economic information revealed higher than expected market dynamics, especially for zebus, resulting in annual contribution margins of 33 € per cattle unit and 11 € per goat unit. The application of the PRY Herd Life model to simulate herd development for present management and two alternate scenarios confirmed the economic profitability of the current livestock system and showed potential for further productive and economic development. However, this might be clearly limited by the region’s restricted carrying capacity. Summarizing, this study illustrates the highly extensive and resources-driven character of the livestock system in the Mahafaly region, with herd mobility being a central element to cope with seasonal shortages in forage and water. But additional key drivers and external factors are gaining importance and increasingly affect migration decisions and grazing management. This leads to an increased risk of local overgrazing and overexploitation of natural pasture resources and intensifies the tension between pastoral and conservation interests. At the same time, it hampers the region’s agronomic development, which has not yet been fully exploited. The situation therefore demonstrates the need for practical improvement suggestions and implication measures, such as the systematic forestation of supplemental forage plant species in the coastal zone or a stronger integration of animal husbandry and crop production, to sustain the traditional livestock system without compromising peoples’ livelihoods while at the same time minimizing the pastoral impact on the area’s unique nature and environment.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The spatial and temporal dynamics in the stream water NO3-N concentrations in a major European river-system, the Garonne (62,700 km(2)), are described and related to variations in climate, land management, and effluent point-sources using multivariate statistics. Building on this, the Hydrologiska Byrans Vattenbalansavdelning (HBV) rainfall-runoff model and the Integrated Catchment Model of Nitrogen (INCA-N) are applied to simulate the observed flow and N dynamics. This is done to help us to understand which factors and processes control the flow and N dynamics in different climate zones and to assess the relative inputs from diffuse and point sources across the catchment. This is the first application of the linked HBV and INCA-N models to a major European river system commensurate with the largest basins to be managed tinder the Water Framework Directive. The simulations suggest that in the lowlands, seasonal patterns in the stream water NO3-N concentrations emerge and are dominated by diffuse agricultural inputs, with an estimated 75% of the river load in the lowlands derived from arable farming. The results confirm earlier European catchment studies. Namely, current semi-distrubuted catchment-scale dynamic models, which integrate variations in land cover, climate, and a simple representation of the terrestrial and in-stream N cycle, are able to simulate seasonal NO3-N patterns at large spatial (> 300 km(2)) and temporal (>= monthly) scales using available national datasets.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The spatial and temporal dynamics in the stream water NO3-N concentrations in a major European river-system, the Garonne (62,700 km(2)), are described and related to variations in climate, land management, and effluent point-sources using multivariate statistics. Building on this, the Hydrologiska Byrans Vattenbalansavdelning (HBV) rainfall-runoff model and the Integrated Catchment Model of Nitrogen (INCA-N) are applied to simulate the observed flow and N dynamics. This is done to help us to understand which factors and processes control the flow and N dynamics in different climate zones and to assess the relative inputs from diffuse and point sources across the catchment. This is the first application of the linked HBV and INCA-N models to a major European river system commensurate with the largest basins to be managed tinder the Water Framework Directive. The simulations suggest that in the lowlands, seasonal patterns in the stream water NO3-N concentrations emerge and are dominated by diffuse agricultural inputs, with an estimated 75% of the river load in the lowlands derived from arable farming. The results confirm earlier European catchment studies. Namely, current semi-distrubuted catchment-scale dynamic models, which integrate variations in land cover, climate, and a simple representation of the terrestrial and in-stream N cycle, are able to simulate seasonal NO3-N patterns at large spatial (> 300 km(2)) and temporal (>= monthly) scales using available national datasets.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A number of tests exist to check for statistical significance of phase synchronisation within the Electroencephalogram (EEG); however, the majority suffer from a lack of generality and applicability. They may also fail to account for temporal dynamics in the phase synchronisation, regarding synchronisation as a constant state instead of a dynamical process. Therefore, a novel test is developed for identifying the statistical significance of phase synchronisation based upon a combination of work characterising temporal dynamics of multivariate time-series and Markov modelling. We show how this method is better able to assess the significance of phase synchronisation than a range of commonly used significance tests. We also show how the method may be applied to identify and classify significantly different phase synchronisation dynamics in both univariate and multivariate datasets.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Synoptic wind events in the equatorial Pacific strongly influence the El Niño/Southern Oscillation (ENSO) evolution. This paper characterizes the spatio-temporal distribution of Easterly (EWEs) and Westerly Wind Events (WWEs) and quantifies their relationship with intraseasonal and interannual large-scale climate variability. We unambiguously demonstrate that the Madden–Julian Oscillation (MJO) and Convectively-coupled Rossby Waves (CRW) modulate both WWEs and EWEs occurrence probability. 86 % of WWEs occur within convective MJO and/or CRW phases and 83 % of EWEs occur within the suppressed phase of MJO and/or CRW. 41 % of WWEs and 26 % of EWEs are in particular associated with the combined occurrence of a CRW/MJO, far more than what would be expected from a random distribution (3 %). Wind events embedded within MJO phases also have a stronger impact on the ocean, due to a tendency to have a larger amplitude, zonal extent and longer duration. These findings are robust irrespective of the wind events and MJO/CRW detection methods. While WWEs and EWEs behave rather symmetrically with respect to MJO/CRW activity, the impact of ENSO on wind events is asymmetrical. The WWEs occurrence probability indeed increases when the warm pool is displaced eastward during El Niño events, an increase that can partly be related to interannual modulation of the MJO/CRW activity in the western Pacific. On the other hand, the EWEs modulation by ENSO is less robust, and strongly depends on the wind event detection method. The consequences of these results for ENSO predictability are discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Based on the fact that streamwater quality reflects landscape conditions, the objectives of this study were: to investigate nitrogen (N), carbon (C), and major ion concentrations in six streams crossing minimally disturbed Atlantic Forest areas, with similar geomorphological characteristics; to determine N and C fluxes in one of these pristine streams (Indaia); and assess the impact of human activity on the biogeochemistry of two other streams in the same region, crossing urbanized areas. The distribution pattern of carbon and inorganic nitrogen dissolved forms, as well as the major ion and biogenic gas concentrations in the streamwater, was similar in pristine streams, indicating that the C and N dynamics were determined by influence of some factors, such as climate, atmospheric deposition, geology, soil type, and land covering, which were analogous in the forested watersheds. The urban streams were significantly different from the pristine streams, showing low dissolved oxygen concentrations, high respiration rates, and high concentrations of carbon dioxide, dissolved inorganic nitrogen, dissolved inorganic carbon, and major ion. These differences were attributed to anthropogenic impact on water quality, especially domestic sewage discharge. Additionally, in the Indaia stream, it was possible to observe the importance of rainfall over temporal dynamics of dissolved carbon forms, and also, the obtained specific flux of dissolved inorganic nitrogen was relatively elevated (approximately 11 kg ha(-1) year(-1)). These results reveal the influence of human activity over the biogeochemistry of coastal streams and also indicate the importance N export of Atlantic Forest to the ocean.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Reactive oxygen species (ROS) appear to be involved in several neurodegenerative disorders. We tested the hypothesis that oxidative stress could have a role in the hippocampal neurodegeneration observed in temporal lobe epilepsy induced by pilocarpine. We first determined the spatio-temporal pattern of ROS generation, by means of detection with dihydroethidium oxidation, in the CA1 and CA3 areas and the dentate gyrus of the dorsal hippocampus during status epilepticus induced by pilocarpine. Fluoro-Jade B assays were also performed to detect degenerating neurons. ROS generation was increased in CA1, CA3 and the dentate gyrus after pilocarpine-induced seizures, which was accompanied by marked cell death. Treatment of rats with a NADPH oxidase inhibitor (apocynin) for 7 days prior to induction of status epilepticus was effective in decreasing both ROS production (by an average of 20%) and neurodegeneration (by an average of 61%). These results suggest an involvement of ROS generated by NADPH oxidase in neuronal death in the pilocarpine model of epilepsy. (C) 2010 Elsevier Ireland Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The transition to turbulence (spatio-temporal chaos) in a wide class of spatially extended dynamical system is due to the loss of transversal stability of a chaotic attractor lying on a homogeneous manifold (in the Fourier phase space of the system) causing spatial mode excitation Since the latter manifests as intermittent spikes this has been called a bubbling transition We present numerical evidences that this transition occurs due to the so called blowout bifurcation whereby the attractor as a whole loses transversal stability and becomes a chaotic saddle We used a nonlinear three-wave interacting model with spatial diffusion as an example of this transition (C) 2010 Elsevier B V All rights reserved

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We investigated the temporal dynamics and changes in connectivity in the mental rotation network through the application of spatio-temporal support vector machines (SVMs). The spatio-temporal SVM [Mourao-Miranda, J., Friston, K. J., et al. (2007). Dynamic discrimination analysis: A spatial-temporal SVM. Neuroimage, 36, 88-99] is a pattern recognition approach that is suitable for investigating dynamic changes in the brain network during a complex mental task. It does not require a model describing each component of the task and the precise shape of the BOLD impulse response. By defining a time window including a cognitive event, one can use spatio-temporal fMRI observations from two cognitive states to train the SVM. During the training, the SVM finds the discriminating pattern between the two states and produces a discriminating weight vector encompassing both voxels and time (i.e., spatio-temporal maps). We showed that by applying spatio-temporal SVM to an event-related mental rotation experiment, it is possible to discriminate between different degrees of angular disparity (0 degrees vs. 20 degrees, 0 degrees vs. 60 degrees, and 0 degrees vs. 100 degrees), and the discrimination accuracy is correlated with the difference in angular disparity between the conditions. For the comparison with highest accuracy (08 vs. 1008), we evaluated how the most discriminating areas (visual regions, parietal regions, supplementary, and premotor areas) change their behavior over time. The frontal premotor regions became highly discriminating earlier than the superior parietal cortex. There seems to be a parcellation of the parietal regions with an earlier discrimination of the inferior parietal lobe in the mental rotation in relation to the superior parietal. The SVM also identified a network of regions that had a decrease in BOLD responses during the 100 degrees condition in relation to the 0 degrees condition (posterior cingulate, frontal, and superior temporal gyrus). This network was also highly discriminating between the two conditions. In addition, we investigated changes in functional connectivity between the most discriminating areas identified by the spatio-temporal SVM. We observed an increase in functional connectivity between almost all areas activated during the 100 degrees condition (bilateral inferior and superior parietal lobe, bilateral premotor area, and SMA) but not between the areas that showed a decrease in BOLD response during the 100 degrees condition.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Accurate assessment of the fate of salts, nutrients, and pollutants in natural, heterogeneous soils requires a proper quantification of both spatial and temporal solute spreading during solute movement. The number of experiments with multisampler devices that measure solute leaching as a function of space and time is increasing. The breakthrough curve (BTC) can characterize the temporal aspect of solute leaching, and recently the spatial solute distribution curve (SSDC) was introduced to describe the spatial solute distribution. We combined and extended both concepts to develop a tool for the comprehensive analysis of the full spatio-temporal behavior of solute leaching. The sampling locations are ranked in order of descending amount of total leaching (defined as the cumulative leaching from an individual compartment at the end of the experiment), thus collapsing both spatial axes of the sampling plane into one. The leaching process can then be described by a curved surface that is a function of the single spatial coordinate and time. This leaching surface is scaled to integrate to unity, and termed S can efficiently represent data from multisampler solute transport experiments or simulation results from multidimensional solute transport models. The mathematical relationships between the scaled leaching surface S, the BTC, and the SSDC are established. Any desired characteristic of the leaching process can be derived from S. The analysis was applied to a chloride leaching experiment on a lysimeter with 300 drainage compartments of 25 cm2 each. The sandy soil monolith in the lysimeter exhibited fingered flow in the water-repellent top layer. The observed S demonstrated the absence of a sharp separation between fingers and dry areas, owing to diverging flow in the wettable soil below the fingers. Times-to-peak, maximum solute fluxes, and total leaching varied more in high-leaching than in low-leaching compartments. This suggests a stochastic–convective transport process in the high-flow streamtubes, while convection–dispersion is predominant in the low-flow areas. S can be viewed as a bivariate probability density function. Its marginal distributions are the BTC of all sampling locations combined, and the SSDC of cumulative solute leaching at the end of the experiment. The observed S cannot be represented by assuming complete independence between its marginal distributions, indicating that S contains information about the leaching process that cannot be derived from the combination of the BTC and the SSDC.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

House prices in the Australian capital cities have been increasing over the last two decades. An over 10% average annual increase arises in the capital cities. In Melbourne, Brisbane and Perth, the house prices increased by more than 15% annually, while the house prices in Darwin increased by even higher at about 21%. It is surprising that, after a decrease in 2008, the house prices in the Australian capital cities show a strong recovery in their last financial year’s increase. How to read the house prices in cities across a country has been an issue of public interest since the late 1980s. Various models were developed to investigate the behaviours of house prices over time or space. A spatio-temporal model, introduced in recent literature, appears advantages in accounting for the spatial effects on house prices. However, the decay of temporal effects and temporal dynamics of the spatial effects cannot be addressed by the spatio-temporal model. This research will suggest a three-part decomposition framework in reading urban house price behaviours. Based on the spatio-temporal model, a time weighted spatio-temporal model is developed. This new model assumes that an urban house price movement should be decomposed by urban characterised factors, time correlated factors and space correlated factors. A time weighted is constructed to capture the temporal decay of the time correlated effects, while a spatio-temporal weight is constructed to account for the timevaried space correlated effects. The house prices of the Australian capital cities are investigated by using the time weighted spatio-temporal model. The empirical findings suggest that the housing markets should be clustered by their geographic locations. The rest parts of this paper are organised as follows. The following section will present a principle for reading urban house prices. The next section will outline the methodologies modelling the time weighted spatio-temporal model. The subsequent section will report the relative data and empirical results, while the final section will generate the conclusions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Social network worms, such as email worms and facebook worms, pose a critical security threat to the Internet. Modeling their propagation dynamics is essential to predict their potential damages and develop countermeasures. Although several analytical models have been proposed for modeling propagation dynamics of social network worms, there are two critical problems unsolved: temporal dynamics and spatial dependence. First, previous models have not taken into account the different time periods of Internet users checking emails or social messages, namely, temporal dynamics. Second, the problem of spatial dependence results from the improper assumption that the states of neighboring nodes are independent. These two problems seriously affect the accuracy of the previous analytical models. To address these two problems, we propose a novel analytical model. This model implements a spatial-temporal synchronization process, which is able to capture the temporal dynamics. Additionally, we find the essence of spatial dependence is the spreading cycles. By eliminating the effect of these cycles, our model overcomes the computational challenge of spatial dependence and provides a stronger approximation to the propagation dynamics. To evaluate our susceptible-infectious-immunized (SII) model, we conduct both theoretical analysis and extensive simulations. Compared with previous epidemic models and the spatial-temporal model, the experimental results show our SII model achieves a greater accuracy. We also compare our model with the susceptible-infectious-susceptible and susceptible-infectious- recovered models. The results show that our model is more suitable for modeling the propagation of social network worms.