916 resultados para soil physical and chemical properties
Resumo:
Pós-graduação em Agronomia - FEIS
Resumo:
Pós-graduação em Agronomia - FEIS
Resumo:
Pós-graduação em Agronomia - FEIS
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Agronomia (Irrigação e Drenagem) - FCA
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Agronomia - FEIS
Resumo:
Pós-graduação em Agronomia - FEIS
Resumo:
Temporary B deficiency can be triggered by liming of acid soils because of increased B adsorption at higher soil pH. Plants respond directly to the activity of B in soil solution and only indirectly to B adsorbed on soil constituents. Because the range between deficient and toxic B concentration is relatively narrow, this poses difficulty in maintaining appropriate B levels in soil solution. Thus, knowledge of the chemical behavior of B in the soil is particularly important. The present study investigated the effect of soil pH on B adsorption in four soils of Parana State, and to correlate these values with the physical and chemical properties of the soils. Surface samples were taken from a Rhodic Hapludox, Arenic Hapludalf, Arenic Hapludult, and one Typic Usthorthent. To evaluate the effect of pH on B adsorption, subsamples soil received the application of increasing rates of calcium carbonate. Boron adsorption was accomplished by shaking 2.0 g soil, for 24 h, with 20 mL of 0.01 mol L-1 NaCl solution containing different concentrations (0.0, 0.1, 0.2, 0.4, 0.8, 1.2, 1.6, 2.0, and 4.0 mg B L-1). Sorption was fitted to non-linear form of the Langmuir adsorption isotherm. Boron adsorption increased as concentration increased. Boron adsorption was dependent on soil pH, increasing as a function of pH in the range between 4.6 and 7.4, although the bonding energy has decreased. Maximum adsorption capacity (MAC) of B was observed in the Arenic Hapludalf (49.8 mg B kg(-1) soil) followed by Arenic Hapludult (22.5 mg kg(-1)), Rhodic Hapludox (17.4 mg kg(-1)), and Typic Usthorthent (7.0 mg kg(-1)). The organic matter content, clay content, and aluminum oxide content (Al2O3) were the soils properties that affecting the B adsorption on Parana soils.
Resumo:
Due to the low radiopacity of Sealer 26, iodoform is frequently empirically added to this sealer. Thus, the interference of this procedure with the physicochemical properties of Sealer 26 must be evaluated. Objective: This study evaluated the influence of the addition of iodoform on setting time, flow, solubility, pH, and calcium release of an epoxy-based sealer. Material and Methods: The control group was pure Sealer 26, and the experimental groups were Sealer 26 added with 1.1 g, 0.55 g or 0.275 g of iodoform. Setting time evaluation was performed in accordance with the ASTM C266-03 speciflcation. The analysis of flow and solubility was in accordance with the ISO 6876-2001 speciflcation. For the evaluation of pH and calcium ion release, polyethylene tubes were filled with the materials and immersed in flasks with 10 ml of deionized water. After 24 h, 7, 14, 21, 28, and 45 days pH was measured. In 45 days, the calcium released was evaluated with an atomic absorption spectrophotometer. Results: The addition of iodoform increased setting time in comparison with pure sealer (P < 0.05). As for flow, solubility, and calcium release, the mixtures presented results similar to pure sealer (p > 0.05). In the 24 h period, the mixture with 1.1 g and 0.55 g of iodoform showed lower pH than pure sealer and than sealer added with 0.275 g of iodoform (P < 0.05). Conclusions: The iodoform added to Sealer 26 interferes with its setting time and solubility properties. Further studies are needed to address the clinical signiflcance of this interference.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Engenharia Civil - FEIS