1000 resultados para soil microelements


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soil science has sought to develop better techniques for the classification of soils, one of which is the use of remote sensing applications. The use of ground sensors to obtain soil spectral data has enabled the characterization of these data and the advancement of techniques for the quantification of soil attributes. In order to do this, the creation of a soil spectral library is necessary. A spectral library should be representative of the variability of the soils in a region. The objective of this study was to create a spectral library of distinct soils from several agricultural regions of Brazil. Spectral data were collected (using a Fieldspec sensor, 350-2,500 nm) for the horizons of 223 soil profiles from the regions of Matão, Paraguaçu Paulista, Andradina, Ipaussu, Mirandópolis, Piracicaba, São Carlos, Araraquara, Guararapes, Valparaíso (SP); Naviraí, Maracajú, Rio Brilhante, Três Lagoas (MS); Goianésia (GO); and Uberaba and Lagoa da Prata (MG). A Principal Component Analysis (PCA) of the data was then performed and a graphic representation of the spectral curve was created for each profile. The reflectance intensity of the curves was principally influenced by the levels of Fe2O3, clay, organic matter and the presence of opaque minerals. There was no change in the spectral curves in the horizons of the Latossolos, Nitossolos, and Neossolos Quartzarênicos. Argissolos had superficial horizon curves with the greatest intensity of reflection above 2,200 nm. Cambissolos and Neossolos Litólicos had curves with greater reflectance intensity in poorly developed horizons. Gleisols showed a convex curve in the region of 350-400 nm. The PCA was able to separate different data collection areas according to the region of source material. Principal component one (PC1) was correlated with the intensity of reflectance samples and PC2 with the slope between the visible and infrared samples. The use of the Spectral Library as an indicator of possible soil classes proved to be an important tool in profile classification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soil organic matter can be analyzed on the basis of the different fractions. Changes in the levels of organic matter, caused by land use, can be better understood by alterations in the different compartments. The aim of this study was to evaluate the effect of different management systems on the labile and stable organic matter of a dystrophic Red Latosol (Oxisol). The following properties were determined: total organic C and total N (TOC and TN), particulate organic C and particulate N (POC and PN), organic C and N mineral-associated (MOC and NM) and particulate organic C associated with aggregate classes (POCA). Eight treatments were used: seven with soil management systems and one with native Cerrado as a reference. The experiment was designed to study the dynamics of systems of tillage and crop rotation, alternating in time and space. The experimental design was a randomized block design with three replications. The soil samples were collected from five depths: 0-5, 5-10, 10-20, 20-30 and 30-40 cm. Changes in organic C by land use occurred mainly in the fraction of particulate organic matter (> 53 mm). Proper management of grazing promoted increased levels of particulate organic matter by association with larger aggregates (2-8 mm), demonstrating the importance of the formation of this aggregate class for C protection in pasture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The increased availability of soil water is important for the management of non-irrigated orange orchards. The objective of this study was to evaluate the availability of soil water in a Haplorthox (Rhodic Ferralsol) under different tillage systems used for orchard plantation, mulch management and rootstocks in a "Pêra" orange orchard in northwest Paraná, Brazil. An experiment in a split-split-plot design was established in 2002, in an area cultivated with Brachiaria brizantha grass in which three tillage systems (no tillage, conventional tillage and strip-tillage) were used for orchard plantation. This grass was mowed twice a year between the rows, representing two mulch managements in the split plots (no mulching and mulching in the plant rows). The split-split-plots were represented by two rootstocks ("Rangpur" lime and "Cleopatra" mandarin). The soil water content in the plant rows was evaluated in the 0-20 cm layer in 2007 and at 0-20 and 20-40 cm in 2008-2009. The effect of soil tillage systems prior to implantation of orange orchards on soil water availability was less pronounced than mulching and the rootstocks. The soil water availability was lower when "Pêra" orange trees were grafted on "Cleopatra" mandarin than on "Rangpur" lime rootstocks. Mulching had a positive influence on soil water availability in the sandy surface layer (0-20 cm) and sandy clay loam subsurface (20-40 cm) of the soil in the spring. The production of B. brizantha between the rows and residue disposal in the plant rows as mulch increased water availability to the "Pêra" orange trees.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The most advanced stage of water erosion, the gully, represents severe problems in different contexts, both in rural and urban environments. In the search for a stabilization of the process in a viable manner it is of utmost importance to assess the efficiency of evaluation methodologies. For this purpose, the efficiency of low-cost conservation practices were tested for the reduction of soil and nutrient losses caused by erosion from gullies in Pinheiral, state of Rio de Janeiro. The following areas were studied: gully recovered by means of physical and biological strategies; gullies in recovering stage, by means of physical strategies only, and gullies under no restoration treatment. During the summer of 2005/2006, the following data sets were collected for this study: soil classification of each of the eroded gully areas; planimetric and altimetric survey; determination of rain erosivity indexes; determination of amount of soil sediment; sediment grain size characteristics; natural amounts of nutrients Ca, Mg, K and P, as well as total C and N concentrations. The results for the three first measurements were 52.5, 20.5, and 29.0 Mg in the sediments from the gully without intervention, and of 1.0, 1.7 and 1.8 Mg from the gully with physical interventions, indicating an average reduction of 95 %. The fully recovered gully produced no sediment during the period. The data of total nutrient loss from the three gullies under investigation showed reductions of 98 % for the recovering gully, and 99 % for the fully recovered one. As for the loss of nutrients, the data indicate a nutrient loss of 1,811 kg from for the non-treated gully. The use of physical and biological interventions made it possible to reduce overall nutrient loss by more than 96 %, over the entire rainy season, as compared to the non-treated gully. Results show that the methods used were effective in reducing soil and nutrient losses from gullies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Water resource quality is a concern of today's society and, as a consequence, low pollutant wastewaters and sludges are being increasingly treated, resulting in continuous production of sewage sludge. Sewage sludge (SS) can be used as soil physical conditioner of agricultural or degraded lands, due to its organic C component. The objective of this research was to evaluate the long-term SS effects on soil physical quality of properties such as bulk density, porosity, permeability and water retention of degraded soils treated with annual SS applications. The SS rates were calculated according to the crop N demand. The field experiment consisted of three treatments: mineral fertilization, 10 and 20 Mg ha-1 of SS (once and twice the SS quantity to meet the maize N demand, respectively), in annual applications to the surface layer of a eutroferric Red Latosol. SS reduced bulk density, increased macroporosity and decreased microporosity after the third application, but did not significantly alter the soil permeability and physical quality as measured by the S index in the surface layer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phytoremediation strategies utilize plants to decontaminate or immobilize soil pollutants. Among soil pollutants, metalloid As is considered a primary concern as a toxic element to organisms. Arsenic concentrations in the soil result from anthropogenic activities such as: the use of pesticides (herbicides and fungicides); some fertilizers; Au, Pb, Cu and Ni mining; Fe and steel production; coal combustion; and as a bi-product during natural gas extraction. This study evaluated the potential of pigeon pea (Cajanus cajan), wand riverhemp (Sesbania virgata), and lead tree (Leucaena leucocephala) as phytoremediators of soils polluted by As. Soil samples were placed in plastic pots, incubated with different As doses (0; 50; 100 and 200 mg dm-3) and then sown with seeds of the three species. Thirty (pigeon pea) and 90 days after sowing, the plants were evaluated for height, collar diameter and dry matter of young, intermediate and basal leaves, stems and roots. Arsenic concentration was determined in different aged leaves, stems and roots to establish the translocation index (TI) between the plant root system and aerial plant components and the bioconcentration factors (BF). The evaluated species showed distinct characteristics regarding As tolerance, since the lead tree and wand riverhemp were significantly more tolerant than pigeon pea. The high As levels found in wand riverhemp roots suggest the existence of an efficient accumulation and compartmentalization mechanism in order to reduce As translocation to shoot tissues. Pigeon pea is a sensitive species and could serve as a potential bioindicator plant, whereas the other two species have potential for phytoremediation programs in As polluted areas. However, further studies are needed with longer exposure times in actual field conditions to reach definite conclusions on relative phytoremediation potentials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Arsenic has been considered the most poisonous inorganic soil pollutant to living creatures. For this reason, the interest in phytoremediation species has been increasing in the last years. Particularly for the State of Minas Gerais, where areas of former mining activities are prone to the occurrence of acid drainage, the demand is great for suitable species to be used in the revegetation and "cleaning" of As-polluted areas. This study was carried out to evaluate the potential of seedlings of Eucalyptus grandis (Hill) Maiden and E. cloeziana F. Muell, for phytoremediation of As-polluted soils. Soil samples were incubated for a period of 15 days with different As (Na2HAsO4) doses (0, 50, 100, 200, and 400 mg dm-3). After 30 days of exposure the basal leaves of E. cloeziana plants exhibited purple spots with interveinal chlorosis, followed by necrosis and death of the apical bud at the 400 mg dm-3 dose. Increasing As doses in the soil reduced root and shoot dry matter, plant height and diameter in both species, although the reduction was more pronounced in E. cloeziana plants. In both species, As concentrations were highest in the root system; the highest root concentration was found in E. cloeziana plants (305.7 mg kg-1) resulting from a dose of 400 mg dm-3. The highest As accumulation was observed in E. grandis plants, which was confirmed as a species with potential for As phytoextraction, tending to accumulate As in the root system and stem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The contribution of humic substances of different composts to the synthesis of humin in a tropical soil was evaluated. Increasing doses (0, 13, 26, 52, and 104 Mg ha-1) of five different composts consisting of agroinpowderrial residues were applied to a Red-Yellow Latosol. These composts were chemically characterized and 13C NMR determined and the quantity of the functional alkyl groups of humic acids applied to the soil as compost was estimated. Thirty days after application of the treatments, organic matter samples were collected for fractionation of humic acids (HA), fulvic acids (FA) and humin (HU), from which the ratios HA/FA and (HA + FA)/HU were calculated. The application of the composts based on castor cake resulted in the highest HU levels in the soil; alkyl groups of the HA fraction of the composts were predominant in the organic components added to the HU soil fraction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the State of Rio Grande do Sul, Brazil, flooded rice fields using Patos Lagoon as the source of water for irrigation are subject to be damaged by salinity, since this source is bound to the sea on its southern end. The sensitivity of rice is variable during plant development, being higher in the seedling and reproductive periods. However, there is not enough information about the behavior of plants under salt stress during the course of its development, especially in the vegetative stage. This study evaluated the effect of different levels of salinity of irrigation water on the salinity of soil solution over time and on some plant attributes, during the vegetative stage of rice. The study was conducted in a greenhouse, where seeds of the variety IRGA 424 were sown in pots and irrigated with water with electrical conductivity (ECi) levels of: 0.3, 0.75, 1.5, 3.0 and 4.5 dS m-1; from the tillering initiation (V4) until the panicle initiation (PI). The evaluations made were the electrical conductiviy of soil solution (ECe), the dry biomass of plants and stems, tillering, height and the transpiration of plants. The ECe increased with the ECi over time, and was determined by water transpiration flux in pots. The ECe values at the end of the experiment were high and, in most cases, higher than the critical values for flooded rice. The growth attributes of rice were negatively affected from ECi of 2.0 dS m-1 and ECe of 4.0 dS m-1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The genetic diversity of ten Bradyrhizobium strains was evaluated for tolerance to high temperatures, to different salinity levels and for the efficiency of symbiosis with cowpea plants (Vigna unguiculata (L.) Walp.). Eight of these strains were isolated from nodules that appeared on cowpea after inoculation with suspensions of soil sampled from around the root system of Sesbania virgata (wand riverhemp) in ecosystems of South Minas Gerais. The other two strains used in our analyses as references, were from the Amazon and are currently recommended as cowpea inoculants. Genetic diversity was analyzed by amplifying repetitive DNA elements with the BOX primer, revealing high genetic diversity with each strain presenting a unique band profile. Leonard jar assays showed that the strains UFLA 03-30 and UFLA 03-38 had the highest N2-fixing potentials in symbiosis with cowpea. These strains had more shoot and nodule dry matter, more shoot N accumulation, and a higher relative efficiency than the strains recommended as inoculants. All strains grew in media of pH levels ranging from 4.0 to 9.0. The strains with the highest N2-fixing efficiencies in symbiosis with cowpea were also tolerant to the greatest number of antibiotics. However, these strains also had the lowest tolerance to high salt concentrations. All strains, with the exceptions of UFLA 03-84 and UFLA 03-37, tolerated temperatures of up to 40 ºC. The genetic and phenotypic characteristics of the eight strains isolated from soils of the same region were highly variable, as well as their symbiotic efficiencies, despite their common origin. This variability highlights the importance of including these tests in the selection of cowpea inoculant strains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Considerations on the interactions of P in the soil-plant system have a long history, but are still topical and not yet satisfactorily understood. One concern is the effect of liming before or after application of soluble sources on the crop yield and efficiency of available P under these conditions. The aim of this study was to evaluate the effect of soil acidity on availability of P from a soluble source, based on plant growth and chemical extractants. Nine soil samples were incubated with a dose of 200 mg kg-1 P in soil with different levels of previously adjusted acidity (pH H2O 4.5; 5.0; 5.5; 6.0 and 6.5) and compared to soils without P application. After 40 days of soil incubation with a P source, each treatment was limed again so that all pH values were adjusted to 6.5 and then sorghum was planted. After the first and second liming the P levels were determined by the extractants Mehlich-1, Bray-1 and Resin, and the fractionated inorganic P forms. In general, the different acidity levels did not influence the P availability measured by plant growth and P uptake at the studied P dose. For some soils however these values increased or decreased according to the initial soil pH (from 4.5 to 6.5). Plant growth, P uptake and P extractable by Mehlich-1 and Bray-1 were significantly correlated, unlike resin-extractable P, at pH values raised to 6.5. These latter correlations were however significant before the second liming. The P contents extracted by Mehlich-1 and Bray-1 were significantly correlated with each other in the entire test range of soil acidity, even after adjusting pH to 6.5, besides depending on the soil buffering capacity for P. Resin was also sensitive to the properties that express the soil buffering capacity for P, but less clearly than Mehlich-1 and Bray-1. The application of triple superphosphate tended to increase the levels of P-Al, P-Fe and P-Ca and the highest P levels extracted by Bray-1 were due to a higher occurrence of P-Al and P-Fe in the soils.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alfalfa is an important forage crop with high nutritive value, although highly susceptible to soil acidity. Liming is one of the most efficient and prevailing practices to correct soil acidity and improve alfalfa yield. The objective of this study was to evaluate response to liming of alfalfa grown in a greenhouse on a Typic Quartzipsamment soil. The treatments consisted of four lime rates (0, 3.8, 6.6 and 10.3 Mg ha-1) and two cuts. Alfalfa dry matter increased quadratically with increasing lime rates. In general, dry matter yield was maximized by a lime rate of 8.0 Mg ha-1. Except for the control, the dry matter nutrient contents in the treatments were adequate. The positive linear correlation between root and nodule dry matter with lime rates indicated improvement of these plant traits with decreasing soil acidity. The soil acidity indices pH, base saturation, Ca2+ concentration, Mg2+ concentration, and H + Al were relevant factors in the assessment of alfalfa yield. The magnitude of influence of these soil acidity indices on yield as determined by the coefficient of determination (R²) varied and decreased in the order: base saturation, H + Al, pH, Ca and Mg concentrations. Optimum values of selected soil chemical properties were defined for maximum shoot dry matter; these values can serve as a guideline for alfalfa liming to improve the yield of this forage on acid soils.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Grazing intensities can influence soil aggregation, which can be temporarily and permanently affected. The objective of this study was to evaluate the aggregate stability in water at the end of a soybean cycle and during pasture development in a crop-livestock integration system under no-tillage and grazing intensities. The experiment was initiated in 2001, in a dystrophic Red Latosol, after soybean harvest. Treatments consisted of pasture (black oat + Italian ryegrass) at heights of 10, 20 and 40 cm, grazed by young cattle, and a control (no grazing), followed by soybean cultivation, in a randomized block design. Soil samples were collected at the end of the soybean cycle (May/2007), during animal grazing (September/2007) and at the end of the grazing cycle (November/2007). The grazing period influences aggregate distribution, since in the September sampling (0-5 cm layer), there was a higher proportion of aggregates > 4.76 mm at all grazing intensities. Soil aggregation is higher in no-tillage crop-livestock integration systems in grazed than in ungrazed areas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Irrigation with treated domestic sewage wastewater (TSE) is an agricultural practice to reduce water requirements of agroecossystems and the nutrient load impact on freshwaters, but adverse effects on soil chemical (salinization, sodification, etc.) and soil physical properties (alteration in soil porosity and hydraulic conductivity, etc.) have been reported. This study aimed to define some relationships among these changes in an Oxisol using multivariate analysis. Corn (Zea mays L.) and sunflower (Helianthus annuus L.) were grown for two years, irrigated with TSE. The following soil properties were determined: Ca2+; Mg2+; Na+; K+ and H + Al contents, cationic exchangeable capacity (CEC), sum of bases (SB), base saturation (V), texture (sand, silt and clay), macro-, micro-, and cryptoporosity (V MA, V MI and V CRI), water content at soil saturation (θS) and at field capacity (θFC), residual water content (θR), soil bulk density (d s), water dispersed clay (WDC) and saturated hydraulic conductivity (K SAT). Factor analysis revealed the following six principal factors: Fine Porosity (composed of Na+; K+; WDC, θR, θRFC, and V CRI); Large Porosity (θS, d s, V MA, Vs); Soil CEC (Ca2+; Mg2+; CEC, SB, V); Soil Acidity (H + Al); and Soil Texture (factors 5 and 6). A dual pore structure appears clearly to the factors 1 and 2, with an apparent relationship between fine porosity and the monovalent cations Na+ and K+. The irrigation (with potable sodic tap water or sewage wastewater) only had a significant effect on Fine Porosity and Large Porosity factors, while factors 3 and 4 (Soil CEC and Soil Acidity) were correlated with soil depth. The main conclusion was a shift in pore distribution (large to fine pores) during irrigation with TSE, which induces an increase of water storage and reduces the capacity of drainage of salts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Little is known about the ecology of soil inoculants used for pathogen biocontrol, biofertilization and bioremediation under field conditions. We investigated the persistence and the physiological states of soil-inoculated Pseudomonas protegens (previously Pseudomonas fluorescens) CHA0 (108 CFU g−1 surface soil) in different soil microbial habitats in a planted ley (Medicago sativa L.) and an uncovered field plot. At 72 days, colony counts of the inoculant were low in surface soil (uncovered plot) and earthworm guts (ley plot), whereas soil above the plow pan (uncovered plot), and the rhizosphere and worm burrows present until 1.2 m depth (ley plot) were survival hot spots (105-106 CFU g−1 soil). Interestingly, strain CHA0 was also detected in the subsoil of both plots, at 102-105 CFU g−1 soil between 1.8 and 2 m depth. However, non-cultured CHA0 cells were also evidenced based on immunofluorescence microscopy. Kogure's direct viable counts of nutrient-responsive cells showed that many more CHA0 cells were in a viable but non-culturable (VBNC) or a non-responsive (dormant) state than in a culturable state, and the proportion of cells in those non-cultured states depended on soil microbial habitat. At the most, cells in a VBNC state amounted to 34% (above the plow pan) and those in a dormant state to 89% (in bulk soil between 0.6 and 2 m) of all CHA0 cells. The results indicate that field-released Pseudomonas inoculants may persist at high cell numbers, even in deeper soil layers, and display a combination of different physiological states whose prevalence fluctuates according to soil microbial habitats.